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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 
forging ahead in the path of progress and dynamism, offering a variety of courses 
and research contributions. I am extremely happy that by gaining ‘A+’ grade from 
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 
opportunities at the UG, PG levels apart from research degrees to students from 
over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the 
society. The centre will be a great help to those who cannot join in colleges, those 
who cannot afford the exorbitant fees as regular students, and even to housewives 
desirous of pursuing higher studies. Acharya Nagarjuna University has started 
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 
year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 
mode, these self-instruction materials have been prepared by eminent and 
experienced teachers. The lessons have been drafted with great care and expertise 
in the stipulated time by these teachers. Constructive ideas and scholarly 
suggestions are welcome from students and teachers involved respectively. Such 
ideas will be incorporated for the greater efficacy of this distance mode of 
education. For clarification of doubts and feedback, weekly classes and contact 
classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 
Distance Education should improve their qualification, have better employment 
opportunities and in turn be part of country’s progress. It is my fond desire that in 
the years to come, the Centre for Distance Education will go from strength to 
strength in the form of new courses and by catering to larger number of people. My 
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 
M.Tech., Ph.D., 

Vice-Chancellor I/c  
Acharya Nagarjuna University. 

 



 

M.SC. PHYSICS 
SYLLABUS 

SEMESTER-I, PAPER-I 
101PH24-CLASSICAL MECHANICS 

Course Objectives: 

 Introduction to basic ideas about Newtonian mechanics 

 Initiation of mechanical system through derivative and problematic approaches  

 Study of motion of the body in different systems of equation 

Unit-I (Lagrangian Mechanics): 

Newtonian mechanics of one and many particle systems, Conservation laws, Constraints and 
their classification, principle of virtual work, D'Alembert's principle and Lagrange's equation 
of motion, Applications: linear harmonic oscillator, simple pendulum, compound pendulum, 
L-C Circuit, Lagrangian for a Charged Particle Moving in an Electromagnetic field. 

Learning Outcomes: 

 Learning concepts of mechanics of the systems for problematic analysis of the objects 

 Lagrangian systems are useful to examination of the motion of the objects 

 In view of Competitive exams problematic and derivational tactics in equation of 
motion in Lagrangian from D'Alembert's principle. 

Unit-II (Hamilton's Mechanics): 

Deduction of Hamilton's principle from D'Alemberts principle, modified Hamilton's 
principle, Hamilton's principle and Lagrange's equations, generalized momentum and cyclic 
coordinates, Hamilton function H and conservation of energy, Hamilton's equation 
(Hamilton's canonical equations of motion), Simple application of the Hamilton principle- 
linear harmonic oscillator, simple pendulum, A-variation, principle of least action. 
Equationsofcanonical transformation, (Generating functions), examples of canonical 
transformations for a harmonic oscillator. 

Learning Outcomes: 

 To study the Hamilton's principle from D'Alemberts principle. 

 To learn about oscillator mechanics and canonical transformations. 

Unit-III (Poisson's Bracket and Hamilton-Jacobi Method): 

Introduction to Poisson's bracket notation, equations of motion in Poisson bracket form, 
fundamentals of Poisson's bracket notation, angular momentum and Poisson brackets, 
Jacobi's identity. 

Hamilton-Jacobi equation of Hamilton's principal function, The Harmonic oscillator problem 
as an example of the Hamilton-Jacobi Method, Hamilton-Jacobi equation for Hamilton's 
characteristic function, Action-angle variables. 



 

Learning Outcomes: 

 To study the equation of motion in Poisson bracket form 
 In view of theory exams theory learning for Hamilton's-Jacobi equations. 

 Learn about Hamilton-Jacobi equation for Hamilton's characteristic function. 

Unit-IV (Dynamics of a Rigid Body): 

The Euler angles-first rotation, second rotation and third rotation, angular momentum and 
inertia tensor, principal axes and principal moments of inertia, rotational kinetic energy of a 
rigid body, Euler's equations of motion of a rigid body, torque-free motion of a rigid body. 

Learning Outcomes: 

 Gained knowledge of The Euler angles-first rotation, second rotation and third 
rotation. 

 Learn about motion and indication of rigid body through tensor, Euler equation of 
motion. 

Unit-V (Special Theory of Relativity): 

Introduction to special theory of relativity, Galilean transformations, principle of relativity, 
transformation of force from one inertial system to another, covariance of the physical laws, 
principle of relativity and speed of light, Lorentz transformations, consequences of Lorentz 
transformations, aberration of light from stars, relativistic Doppler's effect. 

Learning Outcomes: 

 Galilean transformations of relativistic mechanics. 
 Covariance of the physical laws 
 Relativistic Doppler's effect. 

Course Outcomes: 

 Students get knowledge on mechanics of the macroscopic things where Newton laws 
are applicable, can learn constrained motion of rigid bodies in one, two and three 
dimensions. 

 Students can understand the motion of bodies similar to Hamilton and Lagrangian 
systems and resolve with practical approach. 

 The students will know the concept of special theory of relativity. 

Text and Reference Books: 

1) Classical Mechanics by H.Goldstein 

2) Fundamentals of Classical Mechanics by J.C. Upadhyaya, 

3) Classical Mechanics by Charles P.Poole, John Safko 3rd Edition, Parson Publications 

4) Classical Mechanics by G. Aruldhas, PHI Publishers 

5) Introduction to special relativity- Robert Resnick. 



 

 (101PH24) 
M.Sc. DEGREE EXAMINATION, MODEL QUESTION PAPER 

M.Sc. PHYSICS-FIRST SEMESTER 
CLASSICAL MECHANICS 

Time: Three hours  Maximum: 70 marks 
Answer ALL Questions 

All Questions Carry Equal Marks 

1 a) What is D’Alembert’s principle? Derive Lagrange’s equation from D’Alembert’s 
principle 

b) Derive Lagrange’s equation from Hamilton’s principle. 
OR 

c) Derive Hamilton equations motion. Show a simple pendulum as an application 
d) State Lagrange-Brackets and their applications. 

2 a) What is Hamilton Jacobi equation? 
b) Define Angular momentum and torque. Write a note on the inverse square law of 

forces. 
OR 

c) What is the Doppler effect? What are the applications of relativistic dynamics of a 
single particle? 

d) Discuss Kepler's problem in action-angle variables. 
3 a) Write a brief note on rigid body dynamics. 

b) Discuss Eulerian angles. Write a brief on Euler’s equation of a rigid body 
OR 

c) Transformations for the acceleration of a particle.  
d) Write a note on the transformation of momentum and force. 

 
4 a) Describe the experimental verification of the variation of mass with velocity 

b) What is the condition for the transformation to be canonical? 
OR 

c) Discuss constraints and their classifications. 
d) Discuss the canonical transformations in detail and explain the condition for a 

transformation to be canonical 
5 a) Show linear harmonic oscillator as a simple application of the Hamilton principle. 

Derive simple pendulum, ∆-variation 
b) Derive Lagrange's Equation from Hamilton's Principle. Write modified Hamilton’s 

principle. 
OR 

c) Write the Hamilton’s principle and Lagrange’s equations. Discuss about velocity-
dependent potential. 

d) What are Lagrangian applications? Prove the laws of conservation of linear 
momentum, angular momentum and energy for a system of particles. 
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LESSON-1 

NEWTONIAN MECHANICS 

1.0 AIM AND OBJECTIVES: 

To provide a set of fundamental principles that describes the relationship between the motion 
of an object and the forces acting upon it. To create a framework for predicting and 
explaining the motion of objects in the macroscopic world. To define inertia and explain that 
objects resist changes in their state of motion. To establish that an object will remain at rest or 
in uniform motion unless acted upon by a net external force. To quantify the relationship 
between force, mass, and acceleration (F=ma). To provide a means of calculating the 
acceleration of an object when subjected to a given force. To establish that forces always 
occur in pairs. To explain that for every action, there is an equal and opposite reaction. To 
develop a systematic approach to analyzing the motion of individual particles under the 
influence of forces. To provide the tools and methods for understanding and predicting the 
trajectory and behaviour of particles. To apply Newton's laws to solve problems involving the 
motion of particles. To analyze the effects of various forces (gravity, friction, etc.) on particle 
motion. To understand concepts such as displacement, velocity, acceleration, and momentum 
in the context of particle motion. To allow the ability to use vector analysis to describe the 
movement of particles in 3 dimensional space accurately. To identify and understand 
fundamental quantities that remain constant in physical systems. To provide powerful tools 
for analyzing and solving problems in mechanics and other areas of physics. To establish that 
the total momentum of a closed system remains constant. To use this principle to analyze 
collisions and other interactions between objects. To establish that the total energy of a closed 
system remains constant. To understand the transformations between different forms of 
energy (kinetic, potential, etc.). To establish that the total angular momentum of a closed 
system remains constant. To analyze rotational motion and understand the factors that affect 
it. In essence, these principles and laws work together to provide a comprehensive framework 
for understanding and predicting the motion of objects in the physical world.  

STRUCTURE: 

1.1 Newton's Laws of Motion 
1.2 Mechanics of a Particle: Conservation Laws 
1.3 Mechanics of a System of Particles 
 1.3.1 External and Internal Forces 
 1.3.2 Centre of Mass 
 1.3.3 Conservation of Linear Momentum 
 1.3.4 Centre of Mass-Frame of Reference 
 1.3.5 Conservation of Angular Momentum 
 1.3.6 Note on Conservation Theorems of Linear and Angular Momentum for a 
           System of Particles 
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1.4 Summary 

1.5 Technical Terms 

1.6 Self-Assessment Questions 

1.7 Suggested Readings 

1.1 NEWTON'S LAWS OF MOTION: 

Sir Isaac Newton expressed his ideas regarding the motion of bodies in the form of three 
laws which are considered as the basic laws of mechanics. In fact mechanics is a study of 
certain general relations describe the interactions of material bodies. One general property of 
a material body is its inertial mass. Another new concept useful in describing interactions is 
force. These two concepts, inertial mass and force were first defined in a quantitative manner 
by Isaac Newton. The definition of mass and force are containing his three laws of motion. 
Law of Inertia (First Law): A body continues in its state of rest or constant velocity, unless 
disturbed by some external influence. The property of a body that it cannot change its state of 
rest or constant velocity is called inertia and the influence under which the velocity of a 
particle changes is called force. Quantitative definitions of force and measure of inertia of a 
body, which we call mass are contained in second and third laws of motion. 
Law of Force (Second Law): The time-rate of change of momentum is proportional to the 

impressed force, i.e., 

ࡲ = ௗ
ௗ௧

        (1) 

Everybody possesses the property of inertia or resistance to motion. This inertia is 
different for different bodies. The measure to this inertia for translation is called the mass of a 
body and is denoted by m. If v be the velocity of a body of mass m, then its momentum is 
defined by 

p = mv and thus ࡲ = ௗ
ௗ௧

 (1a)     (ܞ݉)

Newton considered that mass of a body remains constant in motion. Therefore, 

ࡲ = ݉ ௗ࢜
ௗ௧

=  (1b)      ࢇ݉

i.e. Force = mass x acceleration 

This is the fundamental law of classical mechanics. Quantitatively, first law is the 

special case of second law, because if force is not acting on a body, i.e., F = 0, then ௗ࢜
ௗ௧

= 0and 

therefore v = constant, including zero. 
Law of Action and Reaction (Third Law): To every action there is always equal and 
opposite reaction. This means that if 1 and 2 bodies are interacting mutually, then  

F12 = - F21      (2) 
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i.e., force on 1st body due to 2nd  = - force on 2nd  body due to 1st.  

1.2 MECHANICS OF A PARTICLE: CONSERVATION LAWS 

Conservation of Linear Momentum: If a force F acting on a particle of mass m, then 
according to Newton’s law of motion, we have 

ࡲ = ௗ
ௗ௧

= ௗ
ௗ௧

 (3)      (࢜݉)

where p = mv is the linear momentum of particle. 

If the external force acting on the particle is zero, then 
ௗ୮
ௗ௧

= ௗ
ௗ௧

(ܞ݉) = 0    

or   p = mv= constant      (4) 

Thus, in the absence of external force, the linear momentum of a particle is conserved. 
This is the conservation theorem for a free particle. 

Conservation of Angular Momentum: The angular momentum of a particle P of mass m 
about a point O is defined as  

۸ = × ܚ  (5)       ܘ

where r is the position vector of the particle P and p = mv is its linear momentum.If 
the force on the particle is F, then the moment of force or torque about O is defined as 

ૌ = × ܚ ۴    (6) 

By differentiating (1.3) with respect to t, then 

ܬ݀
ݐ݀ =

݀
ݐ݀

ݎ) × ( =
ݎ݀
ݐ݀ ×  + ݎ ×

݀
ݐ݀  

or  ௗ
ௗ௧

= ݎ × ∵ቂ ܨ ௗ
ௗ௧

×  = ݒ ݒ݉× = 0ቃ 

Therefore, ૌ = ௗ۸
ௗ௧

= ௗ
ௗ௧

ܚ) ×    (7)   (ܘ

 

Fig. 1.1: Angular Momentum of a Particle P along a Point O. 
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Thus, the time rate of change of angular momentum of a particle is equal to the torque 

acting on it. This analogues to the equation (3) for linear motion. 

If the torque acting on a particle is zero, then  

ૌ = ௗ۸
ௗ௧

= ۸ ݎ 0 = constant     (8) 

Therefore, angular momentum of a particle is constant of motion in absence of 

external torque. 

Conservation of Energy: 

Work: Work done by an external force F upon a particle in displacing from point 1 to another 

point 2 is defined as  

ଵܹଶ = ∫ ۴. ଶܚ݀
ଵ       (9) 

Kinetic Energy and Work-Energy theorem:  

 

Fig. 1.2: Workdone by a Force on a Particle 

According to newton’s 2nd law F = m dv/dt and hence 

ܚ݀.۴ = ݉
ܞ݀
ݐ݀ ܚ݀. = ݉

ܞ݀
ݐ݀ ݐ݀ ܞ. ∵ ܚ݀ =

ܚ݀
ݐ݀ ݐ݀ =  ൨ݐ݀ ܞ

= m
݀
ݐ݀ 

1
2 .ܞ = ൨dtܞ ݀ 

1
2 mvଶ൨ 

Therefore, equation (7) is obtained as  

ଵܹଶ = ∫ ଶݎ݀.ܨ
ଵ = ଶܶ − ଵܶ   (10)  

This is known as work-energy theorem. 

Conservation of Force and Potential energy: If the work done (W12) by force in moving a 
particle from point 1 to point 2 is the same for any possible path between the points, then the 
force is said to be conservative. The region in which the particle is experiencing a 
conservative force is called as conservative force field. 
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Thus, for conservative force (Fig. 1.2) 

ܲ ∫ F.݀rଶ
ଵ = ܳ ∫ F.݀rଶ

ଵ ∫ܲ ݎ  F. ݀rଶ
ଵ + ܳ ∫ F.݀ܚଵ

ଶ = 0  ݅. ݁. ݎ݀.ܨ∮, = 0  (11) 

Thus, if the force is conservative, the work done on the particle around a closed path 
in the force field is zero. In case of a non-conservative force like friction, the amount of work 
done around different closed paths are different and not zero. 

According to stokes theorem,   

රࡲ. ࢘݀ = ඵܿࡲ ݈ݎݑ.  ࢙݀

Since the work done around the closed path is zero, it does not depend on its length. 
So, we may do integration over the perimeter of the area ds.  

ර۴. ܚ݀ = curl ۴.݀ܛ = 0 

But, ds ≠ 0 and hence in general 

curl ۴ = 0 or સ × ۴ = 0    (12) 

Therefore, force can be expressed as 

۴ = −સܸ = −ቀ̂ డ
డ௫

+ ȷ̂ డ
డ௬

+ ݇ డ
డ௭
ቁ   (13) 

Because ∇ × ∇ܸ = ̂ ቀ డ
మ

డ௬డ௭
− డమ

డ௭డ௬
ቁ + ̂ ቀ డ

మ
డ௭డ௫

− డమ
డ௫డ௭

ቁ+ መܓ ቀ డమ
డ௫డ௬

− డమ
డ௬డ௫

ቁ = 0 

This scalar function V is known as potential or potential energy and depends on position. 

∫ .ࡲ ଶ࢘݀
ଵ = −∫ ∇ܸ. ଶ࢘݀

ଵ = −∫ dVଶ
ଵ = ଵܸ − ଶܸ  (14) 

Now, if we assume the position 1 is at infinity and the potential at infinity is zero.  

Now potential at a point r is given by  

(ݎ)ܸ = −∫ ܚ݀.۴
ஶ       (15) 

From equation (1.14), the work done by the conservative force is  

ଵܹଶ = ∫ ۴. ଶܚ݀
ଵ = ଵܸ − ଶܸ     (16) 

This gives the change in potential when particle moved from position 1 to position 2. 

Conservation Theorem: According to equation (10), the amount of work done by a force in 
moving a particle from position "1" to "2" is given by the change in kinetic energy i.e., 

ଵܹଶ = ∫ ۴. ଶܚ݀
ଵ = ଶܶ − ଵܶ     (17) 

Therefore, from eq. (16) and (17), 

ଵܸ − ଶܸ = ଶܶ − ଵܶ or ଵܶ + ଵܸ = ଶܶ+ ଶܸ = constant  (18) 
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Thus, the sum of kinetic and potential energies (i.e., total mechanical energy) of a 
particle remains constant in a conservative force field. This is known as the law of 
conservation of energy. 

Remember that the law of conservation of energy gives us no new information, not 
contained in Newton's second law of motion. If we multiply by v = dr/dt to both sides of  
F = m. dv/dt and integrate with respect to t, we obtain 

නm
dܞ
dt . ݐ݀ܞ = න۴.

dܚ
dt ݐ݀ + constant (say E) 

   ∫ ௗ
ௗ௧
ቂଵ
ଶ
. ܞ݉ ቃܞ ݐ݀ = ∫ ۴. dܚ +  ܧ

න݀ 
1
2݉vଶ൨ − න۴. dܚ =  ݎ ܧ

1
2݉vଶ −න ۴. dܚ



ஶ
=  ܧ

i.e.     T + V = E    (19) 

where the constant E is the total energy of the particle. The above Equation represents 
the conservation energy theorem. 

Conservation laws, obtained above, are the constants of motion and referred as the 
first integrals of the motion. They are very useful because we get some important information 
physically about the system just at a glance from these integrals. In fact once integration of 
the equation of motion under certain condition on the system yields the first integral. Since 
Newton's equation is a second order differential equation, these first integrals of motion are in 
fact first order differential equations.  

1.3 MECHANICS OF A SYSTEM OF PARTICLES: 

1.3.1 External and Internal Forces 

In the last section, we arrived at some results, especially conservation theorems, for 
the mechanics of a particle. These results can be easily generalized to the case of a system of 
particles by taking care of mutual interactions. Now, if a mechanical system consists of two 
or more particles, then the force on the ith particle is given by 

ܨ = ܨ + ∑ ேܨ
ୀଵ      (20) 

where ܨ is the external force, acting on the ith particle due to sources outside the 

system. ܨis the internal force on the ith particle due to the jth particle and the total internal 

force due to all other particles (j=l to N) on the ith particle is represented by the sum in 

equation (20), where N is the number of particles in the system and ܨ, the force of ith 
particle on itself, is naturally zero. 
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According to Newton's second law 

ܨ = ప̇ = ݉
ݒ݀
ݐ݀ = ݉

݀ଶݎ
ଶݐ݀  

Now, when the sum is taken over all the particles of the system, equation (20) takes 
the form 

ௗమ

ௗ௧మ
∑ ݉r = ∑ ܨ + ∑ ∑ ܨ  (i ≠ j)    (21) 

On the right hand side of equation (21) first sum represents the total external force Fe. 
According Newton's third law, any two particles of the system exert equal and opposite forces 
on each other, i.e.,    

ܨ =        (22)ܨ

Since the second sum in equation (21) represents the internal forces in pairs and for 
each pairresultant force is zero, consequently this sum vanishes. 

Thus, equation (21) is 

ܨ = ௗమ

ௗ௧మ
∑ ݉r      (23) 

1.3.2 Centre of Mass: 

We define the centre of mass R of the system by 

ܴ = ∑ ୰
∑ 

= ∑ ୰
ெ

      (24)  

where ∑ ݉  = M is the total mass of the system. In view of eq. (23), eq. (24) assumes 
the form 

ܨ = ܯ ௗమࡾ
ௗ௧మ

=  a      (25)ܯ
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Thus, the acceleration of the centre of mass is due to only the external forces and is 
given by Newton's second law of motion. Thus, the centre of mass of a system of particles 
moves as if it were a particle of mass equal to the total mass of the system subjected to the 
external forces applied on the Z System 

1.3.3 Conservation of Linear Momentum: 

If we differentiate eq. (1.24) with respect to t, we obtain 

ܯ
ܴ݀
ݐ݀ = ݉ଵ

ଵݎ݀
ݐ݀ + ݉ଶ

ଶݎ݀
ݐ݀ + ⋯+  ݉ே

ேݎ݀
ݐ݀  

or   ܸܯ = ݉ଵݒଵ + ݉ଶݒଶ + ⋯+ ݉ேݒே = ∑ ݉vே
ୀଵ  (26) 

which gives the velocity (V) of center of mass. The sum ∑݉v =  is the total ۾ 
linear momentum of all the particles of the system 

Thus     P=MV    (27) 

Thus, the total linear momentum of the system is equal to the product of total mass of 
the system and the velocity of Centre of mass. 

Differentiating eq. (27) with respect to , we get 

ௗ۾
ௗ௧

= ௗ(ெ)
ௗ௧

= ܯ ௗ
ௗ௧

+ ܯ ௗమோ
ௗ௧మ

    (28)  

Hence by using eq. (25), the total external force on the system is 

ܨ = ௗ۾
ௗ௧

= ௗ(ெ)
ௗ௧

     (29) 

When ܨ = 0, 

ܲ = ܸܯ = ∑ ݉v      (1.30) 

Thus, if the total external force F on the system is zero, its total linear momentum is 
the constant ofmotion. This is the law of conservation of linear momentum for a system.  

1.3.4 CENTRE OF MASS-FRAME OF REFERENCE: 

An inertial frame attached with the centre of mass of an isolated system (i.e., a system 
free from external forces) of particles is called the centre of mass-frame of reference or C-
frame of reference. In this. C-frame of reference, the centre of mass remains at rest i.e., V= 0. 
So that in view of eq(27), the total linear momentum of the system in C-frame of reference is 
always zero, i.e. 

ܲ = ܸܯ = ݉v


= 0 (in C − frame of reference) 

This is why the C-frame is called the zero-momentum frame. This C-frame is 
important because several experiments which we perform in the laboratory (or L-frame) can 
be more simply analyzed in the centre of mass frame of reference. 
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1.3.5 CONSERVATION OF ANGULAR MOMENTUM: 

If J1, J2 are the angular momenta of various particles of a system about a given point 
O, the total angular momentum about the point O is given by 

۸ = ۸ + ۸ + ⋯+ ۼ۸ = ܚ) × (ܘ + ܚ) × (ܘ + ⋯+ ۼܚ) ×  (ۼܘ

۸ = ∑ ࢘) × )ே
ୀଵ     

 (31) 

 

Also  
ௗ۸
ௗ௧

= ∑ ݎ) × )̇ + ∑ ݎ) × )ܨ       (∵ ݎ̇  ×  = ݒ × ݒ݉ = 0) (32) 

If we take product with ri in eq. (32) and sum over all the particles of the system, then 

∑ ݎ) × )ܨ = ∑ ݎ) × (ܨ + ∑ ∑ ൫ݎ × ൯ܨ   (33)  

The last term contains the double sum for i, j = 1 to N and hence it is a sum of the pairs of the 
form, given by  

ݎ  × ܨ + ݎ × ܨ = ൫ݎ − ൯ݎ × ܨ = ݎ ×  ܨ

because ܨ =    according to Newton's third law of motionܨ−

Now, if the internal forces between any two particles of the system in addition to 
being equal and opposite be central i.e., lie along the line joining them, then from the 
property of cross product ݎ  × ܨ = 0. 

Thus, the last term of eq. (33) vanishes and hence 

(ݎ × (ܨ


= (ݎ × (ܨ =


߬ 

But from equation (32), we have 

(ݎ × (ܨ


=
݀J
 ݐ݀

Thus,   ߬ = ௗ۸
ௗ௧

      (34) 
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This means that the time rate of change of total angular momentum of a system of 
particles is equal to the applied external torque on the system about the same point. 

If   ߬ = 0,  

۸ = ۸ + ۸ + ⋯+ ۼ۸ = constant   (35) 

In absence of the external torque, the total angular momentum of a system of particles 
is conserved. This is the conservation theorem for total angular momentum. 

1.3.6 NOTE ON CONSERVATION THEOREMS OF LINEAR AND ANGULAR 
MOMENTUM FOR A SYSTEM OF PARTICLES: 

We have stated the conservation theorems of linear and angular momentum of a 
system of particles by assuming the validity of Newton's third law for internal forces in the 
former case and in the later case additionally the central character of internal forces. Both of 
these conditions are satisfied for some physical forces, for example gravitational forces in a 
system, action reaction forces in a rotating mass attached to the string etc. However, there are 
action and reaction forces which do not obey the third law and also do not lie along the line 
joining the two particles. For example, if we consider two charges, moving with uniform 
velocities parallel to each other (which are not perpendicular to the line joining the two 
charges), they are according to Bio-Savart law, the forces on the two charges due to each 
other are of course equal and opposite, but they do not lie along the line joining them. Further 
let us consider two charges so that instantaneously one charge is moving directly towards the 
other but the other is moving at right angles the direction of the motion of the first. 
Consequently, the other charge exerts a definite force on the first charge, but it does not 
experience any reaction force at all. In such cases, the conservation theorems of linear and 
angular momentum appear not to be correct. However, the laws of linear and angular 
momentum a known as the fundamental laws of nature and therefore, one has to investigate 
for finding the way for the validity of the conservation theorems. For examples, the sum of 
mechanical angular momentum and electromagnetic angular momentum of a system of 
moving charges remains constant in time. 

1.3.7 CONSERVATION OF ENERGY:  

Similar to a single particle, the total amount of work done by the forces acting on various 
particles of the system from an initial configuration 1 to final configuration 2 is given by 

ଵܹଶ = ∑ ∫ ݎ݀.ܨ = ∑ ∫ .ܨ ݎ݀ = ∑ ∑ ∫ .ܨ ݎ݀
ଶ
ଵ

ଶ
ଵ

ଶ
ଵ

ே
ୀଵ  (36) 

Kinetic Energy: But according to second law,   

ܨ = ݉
ݒ݀
ݐ݀  
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ଵܹଶ = න ݎ݀.ܨ = න ݉ݒప̇. ݐ݀ݒ
ଶ

ଵ

ଶ

ଵ

ே

ୀଵ

= න ݀ ൬
1
2݉ݒଶ൰

ଶ

ଵ

ே

ୀଵ

= 
1
2݉ݒଶ



൩
ଵ

ଶ

 

ଵܹଶ = ଶܶ − ଵܶ      (37) 

Thus, the work done is again equal to the change in kinetic energy (work-energy 
theorem), where 

ܶ = ∑ ଵ
ଶ
݉ݒଶ       (38) 

denotes the kinetic energy of the system 

If v = vV  is the velocity of the ith particle relative to the velocity of the centre of 
mass, then 

ܶ = 
1
2݉v୧. v୧ =




1
2݉(v୧େ + ܸ). (v + ܸ)



 


1
2݉v୧େଶ + 

1
2ܸ݉ଶ + ݉v୧େ.ܸ = 

1
2݉v୧େଶ +

ܸଶ

2 ݉ + ܸ.݉v୧େ


 

But ∑ ݉ = ܯ , total mass of the system and ∑ ݉v୧େ = 0 

Thus    ܶ = ∑ ଵ
ଶ
݉v୧େଶ + ଵ

ଶ
ଶܸܯ      (39) 

Thus, the total kinetic energy of a system of particle is the sum of kinetic energy of 
motion about centre of mass plus the kinetic energy of motion of the total mass of the system, 
as if it were concentrated at the centre of mass. 

Potential Energy: In eq. (1.36), if the external and internal forces both are conservative 
derivable from scalar potential, then 

ܨ = −∇ ܸ = − ቂଓ̂ డ
డ௫

+ ଔ̂ డ
డ௬

+ ݇ డ
డ௭
ቃ   (40)  

and   ܨ = −∇ ܸ = − ቂଓ̂ డೕ
డ௫

+ ଔ̂ డೕ
డ௬

+ ݇ డೕ
డ௭

ቃ   (41) 

If the internal forces are central in nature, the potential energy ܸ  will be a function of 

scalar distance ݎ = หݎ −   ห only. Thenݎ

ܸ = ܸ൫หݎ −  ห൯     (42)ݎ

So that   డೕ
డ௫

= డೕ
డೕ

డೕ
డ௫

= (௫ି௫ೕ)
ೕ

డೕ
డೕ

    (43) 

Because  ݎ = หݎ − หݎ = ቂ൫ݔ − ൯ݔ
ଶ

+ ൫ݕ − ൯ݕ
ଶ

+ ൫ݖ − ൯ݖ
ଶቃ

భ
మ    

and hence      డೕ
డ௫

= (௫ି௫ೕ)
ೕ
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Similarly, డೕ
డ௬

= (௬ି௬ೕ)
ೕ

డೕ
డೕ

or డೕ
డ௭

= (௭ି௭௬ೕ)
ೕ

డೕ
డೕ

 

Therefore, from equation (41), we have  

ܨ = −
1
ݎ
߲ ܸ

ݎ߲
ൣ൫ݔ − ൯ଓ̂ݔ + ൫ݕ − ൯ଔ̂ݕ + ൫ݖ −  ൯݇൧ݖ

= ݎ)− − (ݎ
1
ݎ
߲ ܸ

ݎ߲
 

Also similarly,  ܨ = −∇ ܸ = − ଓ̂ డೕ
డ௫ೕ

+ ଔ̂ డೕ
డ௬ೕ

+ ݇ డೕ
డ௭ೕ

൨ 

= ൫ݎ − ൯ݎ
ଵ
ೕ

డೕ
డೕ

Here, డೕ
డ௫

= ൫௫ି௫ೕ൯
ೕ

etc ൨ (44) 

Thus, the internal forces ܨ and ܨ between the ith and jth particles are equal and 
opposite and automatically satisfy third law and lie along the line (ݎ −  ) joining the twoݎ
particles. Now, if we consider the last term of equation (36), then it can be written as  

න ܨ ݎ݀. =
1
2

ଶ

ଵ
ஷ 



න ݎ݀.ܨ) + ܨ (ݎ݀. =
1
2

ଶ

ଵ

න −൫∇ ܸ ݎ݀. + ∇ ܸ ൯ݎ݀.
ଶ

ଵ
ஷ


 ஷ 

 

= − ଵ
ଶ
∑ ∑ ∫ ∇ ܸ ݎ݀.

ଶ
ଵ

ஷ
    (45) 

Because    ∇ ܸ = ∇ ܸ = −∇ ܸ ∵
డೕ
డ௫

= డೕ
డ௫ೕ

൨  and ݀ݎ − ݎ݀ =  ݎ݀

Thus eq. (36) in view of eqs. (40) and (45) is 

ଵܹଶ = −න ∇ ܸ ݎ݀. −
1
2න ∇ ܸ ݎ݀.

ଶ

ଵ
ஷ

= −න ݀ ܸ −
1
2න ݀ ܸ

ଶ

ଵ
ஷ

ଶ

ଵ

ଶ

ଵ

 

= −  ቈ∑ [ ܸ]ଵଶ + ∑ ∑ ൣ ܸ൧ଵ
ଶ


ஷ

 = ଵܸ − ଶܸ   (46) 

where V the total potential energy of the system is defined as 

ܸ =  ∑ ܸ +
ଵ
ଶ
∑ ∑ ∫ ܸ

ଶ
ଵ

ஷ
    (47) 

Conservation Theorem: Now, we obtain from eqs. (37) and (46) 

ଶܶ − ଵܶ = ଵܸ − ଶܸ  ݎ ଵܶ + ଵܸ = ଶܶ + ଶܸ   (48)  

This is the law of conservation of energy for a system of particles 

It is to be noted that in eq. (47) the total potential energy V has been defined, provided 
the external and internal forces are both derivable from scalar potentials. We may call the 
second term in eq. (47) as the potential energy which may not be zero and vary with time. 
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However, for a rigid body, the internal potential energy will remain constant. In fact, a rigid 
body is a system of particles with fixed inter-particle distances and therefore, the internal 
forces in a rigid body do not do any work, when the body moves from one configuration to 
another. Thus, the internal potential energy of a rigid body is constant and can be taken as 
zero to discuss its motion.  

1.4 SUMMARY: 

This lesson provides a comprehensive list of summaries related to Newton's Laws, Particle 
Mechanics, and Conservation Laws.  

These principles and laws collectively summarizes: 

 Establish a fundamental framework: To describe and predict the motion of objects, 
from individual particles to macroscopic systems, by defining the relationships 
between force, mass, and motion. 

 Analyze and solve motion problems: Provide tools to calculate trajectories, 
understand forces like gravity and friction, and apply vector analysis in 3D space. 

 Identify and utilize conserved quantities: To simplify complex problems by 
recognizing that momentum, energy, and angular momentum remain constant in closed 
systems, aiding in the analysis of collisions, energy transformations, and rotational 
motion. 

 Essentially, these principles are the foundation of classical mechanics, enabling us to 
understand and predict how things move in the physical world. 

1.5 TECHNICAL TERMS:  

 Angular momentum, linear momentum, total energy (T+V). 

1.6 SELF-ASSESSMENT QUESTIONS:  

1) Prove the laws of conservation of linear momentum, angular momentum and 
energy for a system of particles.  

2) State and prove a work-energy theorem. 

1.7 SUGGESTED READINGS: 

1) Classical Mechanics: H.Goldstein 

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma  

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-2 

LAGRANGIAN MECHANICS 

2.0 AIM AND OBJECTIVES: 

The motto of this lesson is to get information regarding the concepts of D'Alembert's 
Principle from the Lagrangian equation and to understand and derivate the concepts of 
constraints and Virtual work. To define and mathematically represent limitations on the 
possible motions of a mechanical system. To simplify the analysis of complex systems by 
reducing the number of independent variables needed to describe their motion. To classify 
constraints (holonomic, non-holonomic, scleronomic, rheonomic). To express constraints as 
mathematical equations or inequalities. To eliminate redundant degrees of freedom in a 
system's description.  To allow the ability to focus on the essential movements of a system. 
To provide a method for analyzing forces and equilibrium in a system without explicitly 
considering constraint forces. To develop a tool for deriving equations of motion based on the 
principle of virtual displacements. To define virtual displacements as infinitesimal, 
hypothetical displacements that are consistent with the system's constraints. To calculate the 
virtual work done by forces during these virtual displacements. To establish that the total 
virtual work done by all forces in a system in equilibrium is zero. To allow for the analysis of 
forces without needing to solve for the constraint forces. To extend the principle of virtual 
work to dynamic systems, allowing for the analysis of motion under the influence of forces. 
To provide a foundation for deriving Lagrange's equations, a powerful tool for describing the 
motion of constrained systems. To combine the concept of virtual work with Newton's 
second law to account for inertial forces. To state that the virtual work done by the impressed 
forces and the inertial forces in a system is zero. To use D'Alembert's principle to derive 
Lagrange's equations by introducing generalized coordinates and the Lagrangian function (L 
= T - V, where T is kinetic energy and V is potential energy).  To create a method of creating 
equations of motion using scalar energy values, rather than vector forces. To establish a 
systematic procedure for deriving equations of motion for complex mechanical systems. To 
simplify the analysis of systems with constraints by using generalized coordinates and the 
Lagrangian. Identify the degrees of freedom of the system and choose appropriate 
generalized coordinates.  Express the kinetic and potential energies of the system in terms of 
these generalized coordinates and their time derivatives. Form the Lagrangian function  
(L = T - V). 

To learn about: 

 Constraints 

 The concept of virtual work 

 D'Alembert's Principlederivation of Lagrangian equation of motion from it 

 Procedure for formation of Lagrange's Equations 
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STRUCTURE: 

2.1 Constraints 

 2.1.1. Holonomic Constraints 

 2.1.2 Nonholonomic Constraints 

2.2 Principle of Virtual Work 

2.3  D'Alembert's Principle 

2.4  Lagrange's Equations from D'Alembert's Principle 

 2.4.1 Procedure for Formation of Lagrange's Equations 

2.5  Summary 

2.6  Technical Terms 

2.7  Self-Assessment Questions 

2.8  Suggested Readings 

2.1 CONSTRAINTS: 

Often the motion of a particle or system of particles is restricted by one or more 
conditions. The limitations on the motion of a system are called constraints and the motion is 
said to be constrained motion. 

2.1.1. Holonomic Constraints: 

Constraints limit the motion of a system and the number of independent coordinates, 
needed to describe the motion, is reduced. For example, if a particle is allowed to move on 
the circumference of a circle, then only one coordinate q1 = θ is sufficient to describe the 
motion, because the radius (a) of the circle remains the same. If r is the position vector of the 
particle at any angular coordinate θ relative to the centre of the circle, then 

|ݎ| = ܽ or ݎ − ܽ = 0    (1)  

Equation expresses the constraint for a particle in circular motion. Similarly, in the case 
of a particle, moving on the surface of a sphere, the correct coordinates are spherical 
coordinates r, θ and ϕ only vary. Therefore q1= θ and q2=ϕ are the two independent 
coordinates for the problem because the constraint is that the radius of the sphere (a) is 
constant (i.e., |r |= a). Since in the circular motion of the particle, one independent coordinate 
θ is needed, the number of degrees of freedom of the system is 1. For the particle, constrained 
to move on the surface of the sphere, two independent coordinates specify its motion and 
hence the degrees of freedom are 2. 

Suppose the constraints are present in the system of N particles. If the constraints are 

expressed in the form of equations of the form 
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,ଵݎ)݂ ,ଶݎ … ,  (2)     (ݐ

then they are called holonomic constraints. Let there be m number of such equations to 
describe the constraints in the particle system. Now, we may use these equations to eliminate 
m of the 3N coordinates and we only n independent coordinates to describe the motion, given 
by  

n = 3N  -m 

The system is said to have n or 3N - m degrees of freedom. The elimination of the 
dependent coordinates can be expressed by introducing n = 3N - m independent variables 
,ଵݍ ,ଷݍ,ଶݍ … ,   .. These are referred as generalized coordinatesݍ

Superfluous Coordinates: The idea of degrees of freedom makes it clear that when we 
are using, say rectangular cartesian coordinates, we have several redundant or superfluous 
coordinates, if there are holonomic constraints. This redundance and non-independence of the 
coordinates makes the problem complicated and this difficulty is resolved by using the 
generalized coordinates. For example, let us consider a body be thrown vertically upward 
with an initial velocity vo. The body will move in a straight line. In cartesian coordinates, the 
motion will be represented as 

ݔ = ݕ,0 = ݐݒ −
1
ݐ2݃

ଶ, ݖ = 0 

Where X and Z axes are horizontal and Y-axis is in vertical direction. At different 
values of the time t, only y coordinate varies and x and z coordinates remain the same. 
Therefore, x and z coordinates are superfluous coordinates. In conclusion, we need only one 
coordinate q = y to describe the vertical motion. 

2.1.2 Nonholonomic Constraints: 

The constraints which are not expressible in the form of eq. (50) are called non-
holonomic. For example, the motion of a particle, placed on the surface of a sphere of radius 
a, will be described by  

|ݎ| ≥ ܽ  or  ݎ − ܽ ≥ 0 

In a gravitational field, where r is the position vector of the particle relative to the centre 
of the sphere. The particle will first slide down the surface and then fall off. The gas 
molecules in a container are constrained to move inside it and the related constraint is another 
example of nonholonomic constraints. If the gas container is in spherical shape with radius a 
and r is the position vector of a molecule. then the condition of constraint for the motion of 
molecules can be expressed as 

|ݎ| ≤ ܽ  or  ݎ − ܽ ≤ 0 

It is to be mentioned that in holonomic constraints, each coordinate can vary 
independently of other. In a nonholonomic system, all the coordinates cannot vary 
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independently and hence the number of degrees of freedom of the system is less than the 
minimum number of coordinates needed to specify the configuration of the system. We shall 
in general consider the holonomic systems. 

Constraints are further described as (i) rheonomous and (ii) scleronomous. In the 
former, he equation of constraint contain the time as an explicit variable, while in the later 
they are not explicitly dependent on time. Constraints may also be classified as (i) 
conservative and (ii) dissipative. In case of conserve constraints, total mechanical energy of 
the system is conserved during the constrained motion and constraint forces do not do any 
work. In dissipative constraints, the constraint forces do work and the mechanical energy is 
not conserved. Time-dependent or rheonomic constraints are generally dissipative.  

Forced Constraints: 

Constraints are always related to forces which restrict the motion of the system. These 
forces are called forces of constraint. For example, the reaction force on a sliding particle on 
the surface of a sphere is the force of constraint. In case of a rigid body, the inertial forces of 
action and reaction between any two particles are the forces of constraint. -Constraint force in 
a simple pendulum is the tension in the string. When a bead slides on a wire, the reaction 
force exerted by the wire on the bead is the force of constraint. These forces of -constraint are 
elastic in nature and usually appear at the surface of contact because the motion due to 
external applied forces' is hindered by the contact. However, Newton has not given any 
prescription to calculate these forces of constraint.  

Usually, the .constraint forces act in a direction perpendicular to the surface of 
constraints while 'the motion of the object is parallel to the surface. In such cases, the work 
done by the forces of constraint is these constraints are termed as workless and may be called 
as ideal constraints. For example, when a particle slides on a frictionless horizontal surface, 
the force of constraint is normal to the surface. There are examples, where the constraint 
force does work. When a body slides on a frictional surface, the work is done by the force of 
constraint (frictional force) for real displacements. 

By definition, the external or applied\forces are all known forces. In the solution of 
dynamical problems either we have to determine all the forces of-constraints or we should 
eliminate them from final equations. If we want to use Newton's form of equations, the forces 
of constraints are to be determined. We discuss below the difficulties, introduced by such an 
approach and how to remove them. 

Difficulties introduced by the Constraints and their Removal: 

Two types of difficulties are introduced by constraints in the solution of mechanical 
problems:  

(1) Let us consider a system of N interacting particles. The force on the ith particle is given by 
ܨ   = ܨ   +  ∑ ேܨ

ୀଵ  
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where ܨ stands for an external force and ܨis the internal (constraint) force on the ith 
particle due  to jth particle. The equation of motion of the ith particle, in view of Newton's 
second law, is 

݉
ௗమ
ௗ௧మ

= ܨ + ∑ ேܨ
ୀଵ     (3) 

where i= 1, 2,...., N. Thus eq. (3) represents a set of N equations. The coordinates ݎare 
connected by equations of constraints of the form: 

,ଵݎ)݂ ,ଶݎ … , ݎ , (ݐ = 0 

Hence the coordinates ݎଵ, ,ଶݎ … ,  .ே of various particles are no longer all independentݎ
This means that N equations represented by (3) are not all independent and therefore, the 
equations of motion are to be written again taking into consideration the equations of the 
constraints. 

(2) The second difficulty introduced by the constraints is that several times the 
constraint forces are not known initially and they are among the unknowns of the problem. In 
fact, these unknown constraint forces are to be obtained from the solution of the problem 
which we are seeking and thus introduce complications in obtaining the solution. For 
example, if a bead is moving on a wire, the force (of constraint) which the wire exerts on the 
bead is not known in the beginning of the problem. 

In case of holonomic constraints, as discussed already, the first difficulty is solved by 
introducing n = 3N - m generalized coordinates, where m is the number of equations of 
constraints in N particle system. In order to remove the second difficulty, namely the forces of 
constraint are not known initially, we formulate the mechanics in such a way that the forces 
of constraint disappear. We require then only the known applied forces. Such an approach is 
due to D'Alembert which uses the ideas of virtual displacement and virtual work.  

2.2  PRINCIPLE OF VIRTUAL WORK: 

In order to investigate the properties of a system, we can imagine arbitrary instantaneous 
change in the position vectors of the particles of the system e.g., virtual displacements. An 
infinitesimal virtual displacement of ith -particle of a system of N particles is denoted by ݎߜ. 
This is the displacement of position coordinates only and does not involve a variation of time 
i.e., 

ݎߜ = ,ଵݍ)ݎߜ ,ଶݍ . . . ,  )     (4)ݍ

Suppose the system is in equilibrium, then the total force on any particle is zero i.e., 

ܨ = 0,    i=1, 2 ,. . .., N 

The virtual work of force ܨ in the virtual displacement ݎߜ will also be zero i.e., 

ߜ ܹ = ܨ ∙ ݎߜ = 0 
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Similarly, the sum of virtual work for all the particles must vanish i.e. 

ܹߜ = ∑ ேܨ
ୀଵ ∙ ݎߜ = 0     (5) 

This result represents the principle of virtual work which states that the work done is 
zero in the case of an arbitrary virtual displacement of a system from a position of 
equilibrium 

The total force ܨ on the ith particle can be expressed as  ܨ = ܨ + f୧ 

where ܨis the applied force and f୧ is the force of constraint 

Hence eq. (5) assumes the form 

ܨ
ே

ୀଵ

∙ ݎߜ +  f

ே

ୀଵ

∙ ݎߜ = 0 

We restrict ourselves to the systems where the virtual work of the forces of constraints is 
zero, e.g., in case of .a rigid body. Then 

∑ ேܨ
ୀଵ ∙ ݎߜ = 0     (6) 

i.e., for equilibrium of a system, the virtual work of applied forces is zero. We see that the 
principle of virtual work deals with the statics of a system of particles. However, we want a 
principle to deal with the general motion of the system and such a principle was developed by 
D'Alembert. 

2.3 D'ALEMBERT'S PRINCIPLE: 

According to Newton's second law of motion, the force acting on the ith particle is given 
by 

ܨ =
݀
ݐ݀ =  ప̇

 This can be written as 

ܨ − ప̇ = 0,   i=1, 2,...., N 

These equations mean that any particle in the system is in equilibrium under a force, which is 
equal to the actual force ܨ plus a reversed effective force ప̇. Therefore, for virtual 
displacements ݎߜ. 

(ܨ − (ప̇
ே

ୀଵ

∙ ݎߜ = 0 

But ܨ = ܨ + f୧, then 

(ܨ − (ప̇
ே

ୀଵ

∙ ݎߜ +  f

ே

ୀଵ

∙ ݎߜ = 0 
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Again, we restrict ourselves to the systems for which the virtual work of the constraints is 

zero, i.e., ∑ fே
ୀଵ ∙ ݎߜ = 0. Then 

∑ ܨ) − ప̇)ே
ୀଵ ∙ ݎߜ = 0     (7) 

This is known as D'Alembert's principle. Since the forces of constraints do not appear in the 

equation and hence now, we can drop the superscript. Therefore, the D'Alembert's principle 

may be written as 

∑ ܨ) − ప̇)ே
ୀଵ ∙ ݎߜ = 0      (8) 

2.4 LAGRANGE'S EQUATIONS FROM D'ALEMBERT'S PRINCIPLE: 

Consider a system of N particles. The transformation equations for the position vectors of the 
particle 

ݎ = ,ଵݍ) ݎ ,ଶݍ . . . ݍ, , … , ݍ ,  (9)    (ݐ

where t is the time and ݍ (k = 1, 2,...,n) are the generalized coordinates. 

Differentiating eq. (9) with respect to t, we obtain the velocity of the ith particle, i.e., 

ݎ݀
ݐ݀ =

ݎ߲
ଵݍ߲

ଵݍ݀
ݐ݀ +

ݎ߲
ଶݍ߲

ଶݍ݀
ݐ݀ + ⋯+

ݎ߲
ݍ߲

ݍ݀
ݐ݀ + ⋯+

ݎ߲
ݍ߲

ݍ݀
ݐ݀ +

ݎ߲
ݐ߲  

Or ݒ = ప̇ݎ = ∑ డ
డೖ


ୀଵ ̇ݍ + డ

డ௧
    

        (10) 

where ݍ̇are the generalized velocities.  

The virtual displacement is given by 

ݎߜ =
ݎ߲
ଵݍ߲

ଵݍ݀  +
ݎ߲
ଶݍ߲

ଶݍ݀  + ⋯+
ݎ߲
ݍ߲

ݍ݀  + ⋯+
ݎ߲
ݍ߲

 ݍ݀ 

ݎߜ = ∑ డ
డೖ


ୀଵ        ݍߜ 

      (11) 

Since by definition the virtual displacements do not depend: on time. 

According to D'Alembert's principle, 

∑ ܨ) − ప̇)ே
ୀଵ ∙ ݎߜ = 0       

      (12) 

Here ∑ ேܨ
ୀଵ ∙ ݎߜ = ∑ ேܨ

ୀଵ ∙ ∑ డ
డೖ


ୀଵ ݍߜ  = ∑ ∑ ቂܨ ∙

డ
డೖ

ቃ
ୀଵ ேݍߜ 

ୀଵ  

= ∑ ܩ
ୀଵ ݍߜ         

      (13) 
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Where ܩ = ∑ ேܨ
ୀଵ ∙ డ

డೖ
= ∑ ቂܨ௫

డ௫
డೖ

+ ௬ܨ
డ௬
డೖ

+ ௭ܨ
డ௭
డೖ

ቃே
ୀଵ    (14) 

These are called the components of generalized force associated with the generalized 
coordinates ݍ. This may be mentioned that as the dimensions of the generalized coordinates 
need not be those of length, similarly the generalized force components ܩmay have 
dimensions different than those of force. However, the dimensions of ܩ, ݍߜ are those of 
work. For example, if ݍߜhas the dimensions of length, ܩ will have the dimensions of force; 
if ݍߜ has the dimensions of angle (θ), ܩ will have the dimensions of torque (τ).  

Further 

∑ ప̇ே
ୀଵ ∙ ݎߜ = ∑ ݉ݎప̈ே

ୀଵ ∙ ∑ డ
డೖ


ୀଵ ݍߜ  = ∑ ቂ∑ ݉ݎప̈ே

ୀଵ ∙ డ
డೖ

ቃ
ୀଵ ݍߜ     (15) 

∑               ݓܰ ݉ݎప̈ே
ୀଵ ∙ డ

డೖ
= ∑ [ ௗ

ௗ௧
(݉ݎప̇ே

ୀଵ ∙ డ
డೖ

) −݉ݎప̇ ∙
ௗ
ௗ௧

 (డ
డೖ

)] (16)  

It is easy to prove that  

ௗ
ௗ௧
ቀడ
డೖ

ቁ = డ
డೖ

ቀௗ
ௗ௧
ቁ = డ୴

డೖ
      (16a)* 

Andడ
డೖ

= డ୴
డೖ̇

      (16b)* 

Therefore, eq (16) is  

∑ ݉ݎప̈ே
ୀଵ ∙ డ

డೖ
= ∑ ቂ ௗ

ௗ௧
ቂ݉ݒ ∙

డ௩
డೖ̇

ቃ − ݉ݒ ∙
డ௩
డೖ

ቃே
ୀଵ   (17) 

Substituting eq (15), we get 

ప̇

ே

ୀଵ

∙ ݎߜ = 
݀
ݐ݀ ݉ݒ ∙

ݒ߲
̇ݍ߲

൨ − ݉ݒ ∙
ݒ߲
ݍ߲

൨
ே

ୀଵ



ୀଵ

 ݍߜ

= 
݀
ݐ݀ ൝

߲
̇ݍ߲

൭
1
2݉(ݒ ∙ (ݒ

ே

ୀଵ

൱ൡ −
߲
ݍ߲

൝
1
2݉(ݒ ∙ (ݒ

ே

ୀଵ

ൡ൩


ୀଵ

ݍߜ  

= ∑ ቂ ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

ቃ ݍߜ
ୀଵ       (18) 

where ∑ ଵ
ଶ
݉(ݒ ∙ )ேݒ

ୀଵ = ܶ is the kinetic energy of the system 

Substituting for ∑ ܨ ∙ ݎߜ  from (12) and ∑ ప̇ ∙ ݎߜ  from (18) in eq.(11), the D'Alembert's 

principle becomes  

∑ ቂቄ ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

ቅ − ቃܩ
ୀଵ ݍߜ = 0    (19) 

As the constraints are holonomic, it means that any virtual displacement ݍߜ is independent 
of ݍߜTherefore, the coefficient in the square bracket for each ݍߜmust be zero, i.e. 
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ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

− ܩ = ௗ ݎ 0
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

=    (20)ܩ

This represents the general form of Lagrange's equations. 

For a conservative system, the force is derivable from a scalar potential V 

ܨ = ∇ܸ = −ı̂ డ
డ௫

− ȷ̂ డ
డ௬

− k డ
డ௭

     (21) 

Hence from eq. (14), the generalized force components are 

ܩ = −∑ ቂడ
డ௫

డ௫
డೖ

+ డ
డ௬

డ௬
డೖ

+ డ
డ௭

డ௭
డೖ

ቃே
ୀଵ     (22) 

Clearly the right hand side of the above equation is the partial derivative of — V with-respect 
to ݍ i.e., 

ܩ = − డ
డೖ

      (23) 

Thus eq. (20) assumes the form 

ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

= − డ
డೖ

      (24) 

ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ(்ି)
డೖ

= 0      (25) 

Since the scalar potential V is the function of generalized coordinates ݍonly not depending 
on generalized velocities, we can write eq. (25) as 

ௗ
ௗ௧
ቂడ(்ି)

డೖ̇
ቃ − డ(்ି)

డೖ
= 0     (26) 

We define a new function given by 

L = T — V      (27) 

which is called the Lagrangian of the system.; Thus, eq. (26) takes the form  

ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ

= 0      (28) 

for k = 1, 2, …, n 

These equations are known as Lagrange's equations for conservative system. They are n in 

number and there is one equation for each generalized coordinate. In order to solve these 

equations, we must know the Lagrangian function L = T – V in the appropriate generalized 

coordinates. 

2.4.1 PROCEDURE FOR FORMATION OF LAGRANGE'S EQUATIONS: 

The Lagrangian function L of a system is given by 

L= T– V      (29) 
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In order to form L, kinetic energy T and potential energy V are to be written in generalized 
coordinates. This is then substituted in the Lagrangian equations 

ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ

= 0      (30) 

to obtain the equations of motion of the system. This involves first to find the partial 

derivatives of L, i.e:, డ
డೖ

and డ
డೖ̇

and then to put their values in eq. (30).. 

Kinetic Energy in Generalized Coordinates: The transformation equations are used to 
transform T from cartesian coordinates to generalized coordinates. Therefore 

ܶ = 
1
2݉ݒଶ =




1
2݉ݎప̇ଶ =




1
2



൭
ݎ߲
ݍ߲



ୀଵ

̇ݍ +
ݎ߲
ݐ߲
൱
ଶ

 

or   ܶ = ܯ + ∑ ̇ݍܯ + ଵ
ଶ
∑ ̇̇ݍݍܯ     (31) 

Where   ܯ = ∑ ଵ
ଶ
݉ ቀ

డ
డ௧
ቁ
ଶ

, ܯ = ∑ ݉
డ
డ௧
∙ డ
డೖ

 

and   ܯ = ∑ ݉
డ
డೖ

∙ డ
డ  

Thus, we see from (31) that in the expression for kinetic energy, first term is independent of 
generalized velocities, while second and third terms are linear and quadratic in generalized 
velocities respectively. For scleronomic systems, the transformation equations do not contain 
time explicitly. So that 

ݒ = ప̇ݎ = 
ݎ߲
ݍ߲

̇ݍ  

Therefore   ܶ = ∑ ଵ
ଶ
݉ݒଶ = ଵ

ଶ
∑ ܯ  ̇   (32)ݍ̇ݍ

In such a case, the expression for T is a homogeneous quadratic form in generalized 
velocities. 

2.5 SUMMARY:  

The relations, which restrict the motion of particles, are called constraints. The constraints are 
divided into holonomous and non-holonomous types. Non-holonomous constraints are further 
divided into' scleronomous and rheonomous constraints. Constraints are associated with force 
called constraint forces. However, the laws of mechanics are so formulated so that the work 
done by the, forces of constraints are zero. 

Constraints: 

 These are limitations on a system's motion, simplifying analysis by reducing the 

number of needed variables. They're expressed mathematically and categorized 

(holonomic, non-holonomic, etc.). 
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Virtual Work: 

 This concept involves hypothetical, infinitesimal displacements (virtual 
displacements) to analyze forces without dealing directly with constraint forces. The 
principle states that the total virtual work in equilibrium is zero. 

D'Alembert's Principle: 

 This extends virtual work to dynamic systems by including inertial forces. It states 
that the virtual work of impressed and inertial forces is zero. This principle is the 
foundation for deriving Lagrange's equations. 

Lagrange's Equations: 

 These equations, derived from D'Alembert's principle, describe a system's motion 
using generalized coordinates and the Lagrangian (kinetic minus potential energy). 
They simplify complex systems, especially those with constraints. 

Procedure for Formation of Lagrange's Equations: 

1) Identify degrees of freedom and generalized coordinates. 

2) Express kinetic and potential energy in terms of these coordinates. 

3) Form the Lagrangian (L = T - V). 

4) Apply Lagrange's equations: dtd(∂q˙i∂L)−∂qi∂L=0. 

5) Solve the resulting equations of motion. 

This procedure produces equations of motion using scalar energy values. 

2.6 TECHNICAL TERMS:  

 ''D’Alembert's Principle, Lagrangian equations. virtual work.  

2.7 SELF-ASSESSMENT QUESTIONS:  

1) What are constraints? Give specific examples to explain the forces of constraints. 

2) Derive Lagrange equations of motion. 

3) Derive Lagrange's equation of motion from D'Alembert's principle.  

2.8 SUGGESTED READINGS: 

1) Classical Mechanics: H. Goldstein 

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma.  
 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON 3 

APPLICATIONS OF LAGRANGE EQUATION 

3.0  AIM AND OBJECTIVES:  

To demonstrate the versatility and power of Lagrange's equations in solving a wide range of 
problems in classical mechanics. To simplify the analysis of complex systems with 
constraints, where traditional Newtonian methods become cumbersome. To provide a method 
of analyzing systems using scalar energy values, rather than vector forces. To apply 
Lagrange's equations to analyze the motion of various mechanical systems, including:  

 Simple harmonic oscillators. 

 Pendulums (simple, double, spherical). 

  Rotating bodies. 

 Systems with multiple degrees of freedom. 

 Systems with complex constraints. 

 To illustrate the advantages of using generalized coordinates and the Lagrangian 
formulation in simplifying problem-solving.  

 To derive equations of motion for systems that are difficult to analyze using Newton's 
laws directly.  

 To show the ability to apply the equations to systems that include non-conservative 
forces. 

 To extend the Lagrangian formulation to describe the motion of charged particles in 
electromagnetic fields.  

 To provide a framework for analyzing the interaction between charged particles and 
electromagnetic fields using the Lagrangian approach.  

 To allow the inclusion of electromagnetic forces into the Lagrangian formulation. 

 To construct the Lagrangian function for a charged particle in an electromagnetic 
field, including the contributions from the particle's kinetic energy and its interaction 
with the electromagnetic potentials (scalar and vector potentials).To derive the 
equations of motion for the charged particle using Lagrange's equations, which will 
include the Lorentz force.To demonstrate how the electromagnetic forces can be 
incorporated into the Lagrangian framework through the use of electromagnetic 
potentials.To show the link between classical mechanics and electromagnetism 
through the Lagrangian formalism.To provide a base for more advanced studies into 
relativistic electromagnetism. 

To learn about: 

 Applications of Lagrange equation 

 Lagrangian for a Charged Particle Movingin an Electromagnetic Field  
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STRUCTURE: 

3.1 Applications of Lagrange Equation 

 3.1.1 Linear Harmonic Oscillator 

 3.1.2 Simple Pendulum 

 3.1.3. Compound Pendulum 

 3.1.4. L-C Circuit 

3.2 Generalized potential (velocity-dependent potential)-Lagrangian for a Charged 
 Particle Moving in an Electromagnetic Field  

3.3 Summary 

3.4 Technical Terms 

3.5 Self-Assessment Questions 

3.6 Suggested Readings 

3.1 APPLICATIONS OF LAGRANGE EQUATION: 

3.1.1 LINEAR HARMONIC OSCILLATOR: 

A Harmonic oscillator is a particle which is bound to an equilibrium position by a force 
which is proportional to the displacement from that position. 

Thus we have, 

Force = −ݔߛ = − ௗ
ௗ௫

   (1)            

where ߛis the spring constant. 

The potential is expressed as, 

(ݔ)ܷ = ଵ
ଶ
 ଶ            (2)ݔߛ

The linear harmonic oscillator can then be visualized on a mass connected to a spring of 
spring constant ߛon shown in Fig. 3.1. 

  

Fig. 3.1 
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The time-independent Schrödinger equation is given by, 

ℏଶ

2݉
݀ଶ߮
ଶݔ݀ +

1
2 ݔߛ

ଶ߮ =  ߮ܧ

or, 

ௗమఝ
ௗ௫మ

+ ଶ
ℏమ
ቀܧ − ଵ

ଶ
ଶቁ߮ݔߛ = 0 (3) 

To solve equation (3), we consider a dimension less quantity, 

ݕ = ቀఊ
ℏమ
ቁ
భ
ర  (4) ݔ

And 

ߣ = ଶ
ℏ
ቀ
ఊ
ቁ
భ
మ  (5) ܧ

       

using (5) and (4) 

ௗమఝ
ௗ௫మ

+ ߣ) − ߮(ଶݕ = 0 (6) 

For large values of y, we can neglect ߣ   we get equation (6) on, 

ௗమఝ
ௗ௫మ

− ଶ߮ݕ = 0 (7) 

Equation (7) is satisfied approximately by the solution,     

(ݕ)߮ = ݁
ି௬మ

ଶൗ  (8) 

Substituting equation (8) in (7) we get, 

ௗమఝ
ௗ௬మ

+ (1− ߮(ଶݕ = 0 (9) 

This indicates that equation (8) satisfied equation (7) approximately and hence we consider 
the exact solution as,                

(ݕ)߮ = ݁
ି௬మ

ଶൗ  (10) (ݕ)ߦ 

Putting the value of  ߮(ݕ)  from (10) in (6) 

ௗమక
ௗ௬మ

− ௗక ݕ2
ௗ௬

+ ߣ) − ߦ(1 = 0 (11) 

The trick next is to linearize the above equation. 

Equation (11) can be solved by using the power series method. 

Let the trial solution be, 

(ݕ)ߦ = ∑ ܽݕஶ
ୀ  (12) 
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ௗమక
ௗ௬మ

=  ∑ (݊ + 1)(݊ + 2)ܽାଵ 2ݕஶ
ୀ  (13) 

ௗక ݕ2−
ௗ௬

=  ∑ −2݊ܽ ݕஶ
ୀ  (14) 

ߣ) − ߦ(1 = ∑ ߣ) − 1)ܽ ݕஶ
ୀ  (15) 

 Putting equation (13), (14) and (15) in (11), 

∑ [(݊ + 1)(݊ + 2) ܽାଶ − ߣ) − 1− 2݊)ஶ
ୀ ܽ ]ݕ=0 

This equation must hold for all values of ߦ, and therefore the coefficient of each power 
of  ߦmust vanish separately. 

This gives in the recursion relation between   ܽାଶ   and ܽ , 

 ܽାଶ   =
ଶିఒାଵ

(ାଵ)(ାଶ)
 ܽ (16) 

It seems that knowing   ܽand  ܽଵ,  ܽଶ,  ܽଷ, … …  can be calculated by using equation (16), 

 ܽଶ   =
ି(ఒିଵ)

ଶ!
 ܽ  ܽଷ   =

ି(ఒିଷ)
ଷ!

 ܽଵ 

 ܽସ   =
(ఒିଵ)(ఒିହ)

ସ!
 ܽ  ܽହ  = (ఒିଷ)(ఒି)

ହ!
 ܽଵ 

Thus we can write equation (12) as, 

(ݕ)ߦ =  ܽ ቂ1 −
(ఒିଵ)
ଶ!

ଶݕ + (ఒିଵ)(ఒିହ)
ସ!

ସݕ + ⋯ቃ +  ܽ ቂݕ −
(ఒିଷ)
ଷ!

+  (ఒିଷ)(ఒି)
ହ!

+ ⋯ቃ

 (17) 

If in the equation (16)ߣ − 1 − 2݊ should be zero for some value of the index n, then ܽାଶ =
0. But since  ܽାସ is a multiple of  ܽାଶ so on, all the succeeding coefficients which are 
related to  ܽby the recursion relation (16) would vanish, and one or the other bracketed 
series in equation (17) would terminate to become a polynomial of degree n. 

This occurs, when, 

ߣ   − 1 − 2݊ = 0 

ߣ,ݎ = 2݊ + 1 (n = 0, 1, 2, ...)  (18) 

Energy Quantization: 

We have obtained the condition when the wave function is acceptable as 

ߣ = 2݊ + 1 (n = 0, 1, 2, ...) 

ߣ =
2
ℏ 
݉
ߛ ൨

ଵ
ଶൗ
 ܧ

again ߣwas  

ܧ  = ℏ
ଶ
߱(2݊ + 1) [As  ߱ = ቂఊ


ቃ
ଵ
ଶൗ   ] 
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ܧ  = ቀ݊ + ଵ
ଶ
ቁ ℏ߱ (19) 

The variation of the energy levels is shown in the Fig. 3.2. 

 
Fig. 3.2 

3.1.2 Simple Pendulum: 

The equation of motion for a simple pendulum of length l, operating in a gravitational 
field is ̈ This equation can be obtained by applying Newton’s Second Law (N2L) to the 
pendulum and then writing the equilibrium equation. It is instructive to work out this 
equation of motion also using Lagrangian mechanics to see how the procedure is applied and 
that the result obtained is the same. For this example, we are using the simplest of pendula, 
i.e. one with a massless, inertia less link and an inertia less pendulum bob at its end, as shown 
in Figure 3.3.  

 

Fig. 3.3 Simple Pendulum 
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Lagrangian formulation The Lagrangian function is defined as  

L = T - V 

where T is the total kinetic energy and U is the total potential energy of a mechanical 
system. 

To get the equations of motion, we use the Lagrangian formulation 

݀
ݐ݀ ൬

ܮ߲
ప̇ݍ߲

൰ −
ܮ߲
ݍ߲

=  ܨ

where q signifies generalized coordinates and F signifies non-conservative forces acting 
on the mechanical system. For the simplify pendulum, we assume no friction, so no non-
conservative forces, so all Fi are 0. The aforementioned equation of motion is in terms of 
 as a coordinate, not in terms of x and y. So we need to use kinematics to get our energy 
terms in terms of .  

For T, we need the velocity of the mass.  

ݒ = ݈.  ߠ̇

So 

T = ଵ
ଶ
ଶݒ݉ = ଵ

ଶ
݉൫݈. ൯ߠ̇

ଶ
= ଵ

ଶ
݈݉ଶ̇ߠଶ 

 

Fig. 3.4 Height for Potential Energy  
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The potential energy, U, depends only on the y-coordinate. Taking  = 0 as the position 
where U = 0, 

ݕ = ݈ − ݈ . ߠݏܿ = ݈ . (1−   (ߠݏܿ

Thus 

ܷ = ݉ .݃ . ݕ = ݉ .݃ . ݈ . (1 −  (ߠݏܿ

Now we have all the parts and pieces to complete the Lagrangian formulation. The 
Lagrangian function in terms of  is 

ܮ = ܶ − ܸ =
1
2݈݉

ଶ̇ߠଶ −݉ .݃ . ݈ . (1−  (ߠݏܿ

The only generalized coordinate is ݍ = . So  

ܮ߲
߲̇

= ݉ . ݈ଶ. ̇ 

Continuing  

݀
ݐ݀ ൬

ܮ߲
߲̇
൰ = ݉ . ݈ଶ. ̈ 

Then    డ
డ

=  −݉ .݃ . ݈ .  ݊݅ݏ

Now, putting these last two equations together 

݀
ݐ݀ ൬

ܮ߲
߲̇
൰ −

ܮ߲
߲ =  ݉ . ݈ଶ. ̈ +  ݉ .݃ . ݈ . ݊݅ݏ = 0 

Simplifying, 

̈ +
݃
݈  .  ݊݅ݏ = 0 

This equation shows that under the condition that the angular amplitude is very small the 
motion of the pendulum is simple harmonic of time period. 

T=2ߨට

 

3.1.3 Compound Pendulum: 
 Any rigid body capable of oscillating in a vertical plane about a horizontal axis 
passing through any point (excepting the centre of gravity) of the bodyis called a compound 
pendulum. 
Let the vertical plane of oscillation of the compound pendulum be the XY plane. 
Let us choose the origin of the coordinate system as the point O through which the horizontal 
axis (the Xaxis) passes. 
Let G be the position of the centre of gravity of the body when at rest. 

OG= l (say) 
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On displacing the pendulum slightly from the position of rest and releasing, the pendulum 
begins to oscillate about the horizontal axis through O. 

At any instant of time t, let G’ be the new position of the centre of gravity and GOˆG' be 
equal, as shownin Figure5. 

Thekinetic energyof thependulum atthe instantt is  

ܶ =  ଵ
ଶ
൯ߠ൫̇ܫ

ଶ
    (20) 

Where I is the moment of inertia of the pendulum about the axis of oscillation. 

 

Fig. 3.5 Positions of Centre of Gravity 

Taking the horizontal axis OX as the reference zero of potential energy, we get the potential 
energy of the pendulum at the instanttas 

V=– mgy=–mglcos(21)          ߠ 

The Lagrangian of the pendulum is thus 

ܮ = ܶ − ܸ = ଵ
ଶ
൯ߠ൫̇ܫ

ଶ
+  (22)    ߠݏ݈ܿ݃݉

From Equation (22) we find that the only generalized coordinate for the pendulum is 
 We thus have the Lagrange’s equation for the compound pendulum.ߠ

ௗ
ௗ௧
ቀడ
డ̇
ቁ = డ

డ
    (23) 

From equation (22) the above equation gives 

݀
ݐ݀ ൬

1
2 . .ܫ 2. ൰ߠ̇ =  ݊݅ݏ ݈݃݉−

Ï + ݊݅ݏ ݈݃݉ = 0 
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̈ +   ௦
ூ

= 0     (24) 

ConsiderinġsmallEquation(24) reducesto 

 

̈ = −   ௦
ூ

     (25) 

Clearly,themotionofthependulumissimpleharmonictotimeperiod 

 

T = 2ߨට


     (26) 

3.1.4. L-C Circuit:  

 The LC-circuit (or resonant circuit) is an electrical circuit that consists of an 
inductor, L, connected in series with a capacitor, C, see Fig. 1. The LC- circuit is an idealised 
model of the RLC- circuit where the resistance is assumed to be zero, thus no energy 
dissipation. A capacitor contains two conducting plates separated by a dielectric media such 
as glass or vacuum. By applying voltage over the plates, electric charge induce an electrical 
field between the plates, resulting in one plate receiving an excess of electrons while the other 
has too few. Therefore the two plates ends up having opposite charge.  

 At the point when the voltage source is removed, the capacitor keeps up its 
charge. The inductor, in its simplest form, is just a coils of wire. An inductor is a device that 
temporarily stores energy in the form of a magnetic field. The magnetic field is generated by 
the current flowing in the inductor. The inductor resists change in the current passing 
through. Assuming that the capacitor is charged and connected in series with an inductor, 
since there is no voltage source the capacitor will start losing its charge resulting in a current 
flow through the circuit. The inductor is acting as a resistance to the current change, meaning 
a slower rate at which the capacitor discharge.  

 At some point in time the capacitor will be completely discharged, all of the 
charge is moving as current in the circuit. The conductor counteracts the change of current by 
inducing its own current, forcing the charges to charge the capacitor. And the cycle begins 
again, only this time the current flows in the opposite direction. Solving the dynamics of the 
system by using the Kirchhoff’s Voltage low, assuming conversation of the total energy, we 
get the following equations.  

∆ ܸ + ∆ ܸ = 0    (27) 
ொ


+ ܮ ௗூ
ௗ௧

= 0     (28) 

ொ


+ ܮ ௗమூ
ௗ௧మ

= 0     (29) 

Solving for Q 

Q = ܳݏܥ(߱ݐ)    (30) 



Centre for Distance Education                       3.10                     Acharya Nagarjuna University  

Where ܳ is the charge stored in the capacitor at time t=0 and ߱ =  is the resonant  ܥܮ√/1
frequency of the system. 

Note that the capacitor acts like a source potential energy given by U = Q2/LC and we can 

interpret T =Lொ̇
మ

ଶ
  as a kinetic energy term. We can therefore attempt at writing a Lagrangian 

describing the system 

    (31) 

The Euler -Lagrange equations given in terms of the generalized coordinate Q and ܳ̇are then 

    (32) 

Where Q is the charge and ܳ̇is the current. Inserting the Lagrangian L gives the following 
equation of motion for the charge 

     (33) 

This is same as (29), therefore we get again 

     (34) 

 

Fig. 3.6: Schematic of the LC-circuit  

3.2.  GENERALIZED POTENTIAL (VELOCITY DEPENDENT POTENTIAL) - 
 LAGRANGIAN FOR A CHARGED PARTICLE MOVING-IN AN 
 ELECTROMAGNETIC FIELD  

In general, the Lagrange's equations can be written as 

ௗ
ௗ௧
ቀ డ்
డೖ̇

ቁ − డ்
డೖ

=    (35)ܩ
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For a conservative system, ܩ = − డ
డೖ

 and then the Lagrange's equations in the usual form 

are 
ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ

= 0 and L= T– V      

      (36)  

However, Lagrange's equations can be put in the form (94), provided the generalized forces 
are obtained from a function ܷ(ݍ,  ̇)given byݍ

ܩ = − డ
డೖ

+ ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ      (37) 

In such a case, L = T — U       
      (38) 

where ܷ(ݍ,  ̇)is called velocity dependent potential or generalized potential. This type ofݍ
case occurs in case of a charge moving in an electromagnetic field. 

In S.I. system, two of the Maxwell's field equations are 

div B = 0 and curl E + డ
డ௧

=0 

or ∇ ∙ ܤ = 0 and ∇ x ۳ +  డ
డ௧

= 0     (39) 

where E and B are electric field and magnetic field vectors respectively 

The force acting on a charge q, moving with velocity v in an electric field E and magnetic 
induction B is given by 

ܨ = ܧ) ݍ + v ×  (40)      (ܤ

Since ∇ ∙ ܤ = 0in eq. (39) and hence B can be expressed as curl of. a vector i.e. 

ܤ = ∇ ×   (41)       ܣ

∇ × ܧ + డ
డ௧
∇ × ܣ = ∇ ݎ 0 × ቀܧ + డ

డ௧
ቁ = 0   (42) 

Hence, we can express the vector quantity ቀܧ + డ
డ௧
ቁ as the gradient of a scalar function ϕ 

ܧ + డ
డ௧

= ܧ ݎ ߶∇− = −∇߶ − డ
డ௧

    (43) 

Substituting for E from (43) in (40), we obtain 

ܨ = ߶∇−)ݍ − డ
డ௧

+ v × ∇ ×  (44)     (ܣ

The terms in eq. (44) can be written in a more convenient form 

Let us consider the x-component. Since ∇߶ = Iመ డథ
డ௫
− ȷ̂ డథ

డ௬
− k డథ

డ௭
 x-component of 

∇߶ is డథ
డ௫

. Also,  
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(v × ∇ × ௫(ܣ = ௬ݒ ቆ
௬ܣ߲
ݔ߲ −  

௫ܣ߲
ݕ߲ ቇ − ௭ݒ ൬

௫ܣ߲
ݖ߲ −  

௭ܣ߲
ݔ߲ ൰ 

We add and subtract the term ݒ௫
డೣ
డ௫

. Then 

(v × ∇ × ௫(ܣ = ௫ݒ
డೣ
డ௫

+ ௬ݒ
డ
డ௫

+ ௭ݒ
డ
డ௫

− ௫ݒ
డೣ
డ௫

− ௬ݒ
డೣ
డ௬

− ௭ݒ
డೣ
డ௭

  (45) 

However, ௗೣ
ௗ௧

= డೣ
డ௫

ௗ௫
ௗ௧

+ డ
డ௬

ௗ௬
ௗ௧

+ డ
డ௭

ௗ௭
ௗ௧

+ డೣ
డ௧

= ௫ݒ
డೣ
డ௫

+ ௬ݒ
డೣ
డ௬

+ ௭ݒ
డೣ
డ௭

+ డೣ
డ௧

 

Where   ݒ௫
డೣ
డ௫

+ ௬ݒ
డೣ
డ௬

+ ௭ݒ
డೣ
డ௭

= ௗೣ
ௗ௧

− డೣ
డ௧

    

      (46) 

Further  డ
డ௫

ݒ) ∙ (ܣ = డ
డ௫
൫ݒ௫ܣ௫ + ௬ܣ௬ݒ +  ௭൯ܣ௭ݒ

= ௫ݒ
డೣ
డ௫

+ ௬ݒ
డ
డ௬

+ ௭ݒ
డ
డ௭

 

     
    (47) 

Substituting from (46) and (47) in (45), we get  

(v × ∇ × ௫(ܣ = డ
డ௫

ݒ) ∙ (ܣ − ௗೣ
ௗ௧

+ డೣ
డ௧

       

      (48) 

Hence,we know the x-component of the force F is 

௫ܨ = ݍ ቀ− డథ
డ௫
− డೣ

డ௧
+ డ

డ௫
ݒ) ∙ (ܣ − ௗೣ

ௗ௧
+ డೣ

డ௧
ቁ = ݍ ቀ− డ

డ௫
(߶ − ݒ ∙ (ܣ − ௗೣ

ௗ௧
ቁ  

      (49) 

Since డ
డ௩ೣ

ݒ) ∙ (ܣ = డ
డ௩ೣ

൫ݒ௫ܣ௫ + ௬ܣ௬ݒ + ௭൯ܣ௭ݒ =

   ௫ , we haveݒ ௫and scalar potential ߶ is independent ofܣ

−
௫ܣ݀
ݐ݀ =

݀
௫ݒ݀

(߶ − ݒ ∙  (ܣ

Therefore, ܨ௫ = ݍ ቂ− డ
డ௫

(߶ − ݒ ∙ (ܣ + ௗ
ௗ௧
ቄ డ
డ௩ೣ

(߶ − ݒ ∙    ቅቃ(ܣ

      (50) 

We define a generalized potential U, given by  

ܷ = ߶)ݍ − ݒ ∙  (51)      (ܣ

which is a velocity dependent potential. Therefore, eq. (50) takes the form 

௫ܨ = − డ
డ௫

+ ௗ
ௗ௧

డ
డ௩ೣ

       

      (52) 

The Lagrarage's equations (35) in this case take the form 
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ݍ) = ,ݔ ̇ݍ = ݔ̇ = ܩ௫andݒ =  (௫ܨ
ௗ
ௗ௧
ቀ డ்
డ௩ೣ
ቁ − డ்

డ௫
=  ௫      (53)ܨ

Substituting Fx from (53) in (52), we get the Lagrange's equation as 

݀
ݐ݀ ൬

߲
ݔ߲̇ (ܶ − ܷ)൰ −

߲
ݔ߲ (ܶ − ܷ) = 0 

or   ௗ
ௗ௧
ቀడ
డ௫̇
ቁ − డ

డ௫
= 0   (54) 

Where ܮ = ܶ − ܷ = ܶ − ߶ ݍ +  (55)      ܣ.ݒݍ

Eq. (55) gives the Lagrangian for a charged particle moving in an electromagnetic field. 

Note: In Gaussian C.G.S. system q is to be replaced by q/c in eqs. (39) and (40), where c 
is the speed of light. Therefore, the expression for generalized potential is obtained to be   
ܷ = ߶ ݍ + 


• ݒ)  A) 

3.3 SUMMARY: 

In this unit we have recollected various applications of Applications of Lagrange equation 

and also learned about dissipation functions and application Lagranges equation for velocity 

dependent potentials as an example of non-conservative system. 

3.4 TECHNICAL TERMS:  

 Linear Harmonic Oscillator, Simple Pendulum, Compound Pendulum, L-C Circuit. 

3.5 SELF-ASSESSMENT QUESTIONS: 

1) What are Lagrangian applications? 

2) Discuss about velocity-dependent potential. 

3.6 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2) Fundamentals of Classical Mechanics by  J.C. Upadhyaya. 

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-4 

HAMILTON’S MECHANICS 

4.0 AIM AND OBJECTIVES:  

To learn about 

 Deduction of Hamilton’s principle from D’Alembert’s principle 
 modified Hamilton’s principle 
 Hamilton’s principle and Lagrange’s equations 

To reformulate Newton's second law in a way that's more convenient for dealing with 
constrained systems.  To provide a foundation for deriving equations of motion in generalized 
coordinates.To express the dynamics of a system in terms of "virtual displacements," which 
are infinitesimal changes in the system's configuration. To effectively handle constraint 
forces by incorporating them into the equations of motion. To provide a stepping stone 
towards the development of Lagrangian mechanics. To provide a variational principle that 
describes the evolution of a dynamical system.To express the laws of motion in terms of an 
integral quantity called the "action." To establish that the actual path taken by a system 
between two points in time is the one that minimizes (or makes stationary) the action. To 
provide a powerful and elegant way to derive the equations of motion.  To lay the 
groundwork for Hamiltonian mechanics, which is essential in both classical and quantum 
physics.This is used to adapt Hamiltons principle to systems that have non-holonomic 
constraints. Thus allowing the powerful tool of Hamiltons principle to be used in a larger set 
of problemsTo provide a general and powerful method for deriving the equations of motion 
for any dynamical system.To simplify the analysis of systems with constraints by using 
generalized coordinates.To express the equations of motion in terms of the Lagrangian, which 
is a function of the system's generalized coordinates and velocities.  
 To eliminate the need to explicitly consider constraint forces. To provide a versatile tool that 
can be applied to a wide range of mechanical systems. 
In essence, these concepts work together to: 

 Provide increasingly abstract and powerful ways to describe and analyze the motion 
of dynamical systems. 

 Simplify the handling of constraints. 
 Lay the foundation for advanced mechanics and related fields. 

STRUCTURE: 

4.1 Deduction of Hamilton’s principle from D’Alembert’s principle  

4.2  Modified Hamilton’s principle 

4.3 Hamilton’s principle and Lagrange’s equations 

4.4 Summary 
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4.5 Technical Terms 

4.6 Self-Assessment Questions 

4.7 Suggested Readings 

4.1  DEDUCTION OF HAMILTON’S PRINCIPLE FROM D’ALEMBERT’S 
 PRINCIPLE: 

The variation of the potential energy V(r) may be expressed in terms of variations of the 
coordinates ri 

ܸߜ = 
ݕ߲
ݎ߲

ݎߜ



ୀଵ

=  ݂



ୀଵ

 ݎߜ

Where fi are potential forces collocated with coordinates ri. In cartesian coordinates, the 
variation of the kinetic energy T(̇ݎ) 

T = ∑ ଵ
ଶ
݉ ଶݎ̇

ୀଵ  

May be expressed in terms of variations of coordinate velocities ̇ݎ 

ܶߜ =  ∑ డ்
డ̇

=  ∑ ݉
ୀଵ


ୀଵ  .ݎ̇ߜݎ̇

For a system of n particle masses mi acted on by n internal forces fi of the potential V, 
D’Alembert’s principle is  

∑ డ்
డ̇

=  ∑ ݉

ୀଵ


ୀଵ   = 0ݎߜప̈ݎ

Integrating D’Alembert’s equation over a finite time period,  

න ݉ప



పୀଵ

పݎ
̈

 dtݎߜ
୲మ

୲భ
+  න  ప݂



పୀଵ ప

̈
 dtݎߜ

୲మ

୲భ
= 0   

න ݉

୲మ

୲భ

݀
ݐ݀ ̇  పݎ



ୀଵ

 dtݎߜ + න ݐ݀ ܸߜ = 0
୲మ

୲భ
 

[݉ݎప  ̇ ݎߜ



ୀଵ

|୲భ
୲మ −  න ݉

୲మ

୲భ

݀
ݐ݀ ̇  పݎ [ dtݎߜ +  න ݐ݀ ܸߜ = 0

୲మ

୲భ
 

−  න ݉

୲మ

୲భ

݀
ݐ݀ ̇  పݎ  dtݎߜ +  න ݐ݀ ܸߜ = 0

୲మ

୲భ
 

−  න ܶߜ
୲మ

୲భ
 dt +  න ݐ݀ ܸߜ = 0

୲మ

୲భ
 

ߜ ∫ (ܶ − ݐ݀ (ܸ = 0୲మ
୲భ

  (1) 
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In this derivation, a variation of the coordinate motions δr(t) from t1 to t2 is considered. That 
is, δr(t1) = 0 and δr(t2) = 0, which eliminates the first term in the third line. The fourth line 
involves a transposition of the variation and the derivative (d(δr)/dt = δr). The last line is a 
statement of Hamilton's principle, which is presented formally in the next section. Note that 
kinetic energy and potential energy are scalar-valued quantities, invariant to changes in 
coordinate systems. So, while Hamilton's principle is derived here in the context of Cartesian 
coordinates, it applies to generalized coordinates as well. 

4.2 MODIFIED HAMILTON’S PRINCIPLE: 

 Using the definition of H in the action, 

I = ∫ [∑ ݍ̇ ,ݍ) ܪ− , ୲మݐ݀[(ݐ
୲భ

  (2) 

We want to vary I to obtain Hamilton’s equations. Since in the Hamiltonian formulation of 
mechanics, the coordinates and momenta are on equal footing, we would like to vary them 
independently in varying I. These variables are however, not independent but must satisfy the 
constraints. 

ݍ̇ −
డு
డ

= 0     (3) 

Which arise from the definitions of  and H. The trivial identitiesof the form 

Ai(q, p, t) = Ai( q, p,t). 

We can vary I independently with respect to qi and pi if we introduce the constraint (3) into 
the action via Lagrange multipliers ߣ. The action becomes 

∗ܫ  =  න ̇ݍ


− ܪ +  ߣ(̇ݍ −
ܪ߲
߲

)


൩ ݐ݀
୲మ

୲భ
 

∗ܫ  =  ∫ ,ݍ)݂ ,,ݍ̇ ୲మݐ݀(ߣ
୲భ

 (4) 

The equations of motion which are obtained using the Lagrange multiplier rule are then  
డ
డ௧

డ
డ̇

− డ
డ

= 0 (5) 

డ
డ௧

డ
డ̇

− డ
డ

= 0 (6) 

߲݂
ߣ߲

= 0 

ݍ̇ −  డு
డ

= 0 (7) 

In obtaining these equations of motion we have varied ݍ,  and ߣ independently in accord 
with the multiplier rule. Equation (7) yields the equations of motion 
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ݍ̇ −  డு
డ

−∑ )ߣ
డమு

డడೕ
) = 0 (8) 

For a nondegenerate system we must have 

Det( డమு
డడೕ

) ≠ 0 (9) 

Which when combined with (7) implies that all Lagrange multipliers ߣ are zero,  

ߣ = 0 (10) 

This means that in the variational principle we will obtain the same results even if we ignore 

the constraint and vary the action (2) with respect to independent variation of ݍ and is 

exactly the modified Hamilton’s principle. This shows that the usual assumption of ignoring 

the constrained implied by ̇ݍ = డு
డ

 is indeed justified by general results from the calculus of 

variations. Finally (5) and (6) with ߣ = 0 in f give Hamilton’s equations of motion. 

4.3 HAMILTON’S PRINCIPLE AND LAGRANGE’S EQUATIONS: 

Since the state of the particle is specified by its location and velocity at a particular 
time, we look for some function of those variables to work with. Then we look for a general 
principle involving this function that tells us how the external world influences the particle’s 
state.  

It was recognized early on that cartesian coordinate axes are not the only way to 
specify location. For the curved track referred to above it would be helpful to have a 
coordinate that just told us how far the particle has moved along the track. Such 
specifications are called generalized coordinates, denoted by qi. There are as many of these as 
there are independent ways for the particle to move; these ways are called degrees of 

freedom. Each coordinate has its corresponding velocity ̇ݍ =  డ
డ௧

 . Then the function we seek 

will be called L(qi ,q!i ,t). (For brevity, we will often omit the subscripts i.)  

The general principle we need was given in its final form by Hamilton, and is often 

called the principle of least action. The term “action” refers to the integral of L over time:  

ܬ = ∫ ,ݍ )ܮ , ݍ̇ ୲మݐ݀ (ݐ
୲భ

. 

Here the limits are two times at which the particle has two different states. We 

imagine that these times and the corresponding states are fixed, but that we can vary both 

 during the time in between, making the particle follow different paths, so that J isݍ̇݀݊ܽ ݍ 

varied. Calling these variations ߜq , ݍ̇ߜ, and ߜJ , we have 

∫= ܬߜ ݍ )ܮ + ݍ,qߜ +̇ , ݍ̇ߜ ݐ݀(ݐ − ∫ ,ݍ )ܮ , ݍ̇ ୲మݐ݀ (ݐ
୲భ

୲మ
୲భ

. 
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Hamilton’s principle says that for the actual motion of the particle, 0 =ܬߜ to first order 
in the variations ݍߜ and ݍ̇ߜ. That is, the actual motion of the particle is such that small 
variations do not change the action.  

Now by Taylor’s theorem we can write to 1st order 

ݍ )ܮ + ,qߜ ݍ +̇ , ݍ̇ߜ (ݐ ≈ ,ݍ )ܮ  , ݍ̇ (ݐ + ܮ߲ 
ݍ߲
qߜ + ܮ߲ 

߲̇
 , ݍ̇ߜ

Where the partial derivatives are evaluated for ߜq = 0 = ݍ̇ߜ. Thus we find 

∫ =ܬߜ ܮ߲]
ݍ߲
qߜ + ܮ߲ 

߲̇
୲మݐ݀ [ݍ̇ߜ

୲భ
. 

 Since ̇ݍ = dq/dt we have ݍ̇ߜ = d(ߜq)/dt , so the 2nd term in the integral is  

න
ܮ߲
ݍ߲̇

(qߜ)݀
ݐ݀

ݐ݀ 
୲మ

୲భ
, 

and we integrate by parts to convert this to 

ܮ߲
߲̇
q|୲భߜ

୲మ − ∫ ݀
 ݐ݀

߲(ఋ୯)
߲̇

. ୲మݐ݀ qߜ
୲భ

. 

Because the states at the initial and final times are fixed, ߜq vanishes at both times, 
sothe first term above is zero. 

 We have then 

ܬߜ =  ∫ ܮ߲]
߲
− ݀

 ݐ݀
ܮ߲)
߲̇

୲మݐ݀ qߜ[(
୲భ

 = 0. 

Since ߜq is arbitrary, the quantity in must vanish, so we have finally 

ܮ߲
߲
− ݀

 ݐ݀
ܮ߲) 
߲̇

)    (11) 

The becomes a differential equation (2nd order in time) to be solved. It is the equation 
of motion for the particle, and is called Lagrange’s equation. The function L is called the 
Lagrangian of the system. Here we need to remember that our symbol q actually represents a 
set of different coordinates. Because there are as many q’s as degrees of freedom, there are 
that many equations represented by Eq (11).  

We have used the D'Alembert's principle to deduce Lagrange's equations. This principle uses 
the idea of virtual work and 'steins from Newton’s second law of motion. These Lagrange’s 
equations can be derived by an entirely different way namely Hamilton's variational 
principle. 

This principle states that for a conservative holonomic system, its motion from time t1 to time 
t2 is such that the line integral known as (action or action integral) 

S = ∫ L dt୲మ
୲భ

        (12) 

with T- V has stationary (extremum) value for the correct path of the motion. 
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The quantity S is called as Hamilton's principal function. The principle may be expressed 
as 

δන L dt
୲మ

୲భ
= 0 

where δ is the variation symbol 

Properties of the Lagrangian: 

 So Hamilton’s principle has given us Eq (11) for the Lagrangian. What do we know 
about L beyond the variables it depends on? We assume we are in an inertial reference frame. 
Then all coordinate axes are equivalent, so L must be a scalar. And our choice of when to 
start the clocks is arbitrary, so L cannot depend explicitly on t.  

Beyond that we can make some reasonable requirements. Suppose we have two 
systems A and B separated by large distances so they do not interact with each other. Then the 
Lagrangian for this composite system must consist of separate parts for each, i.e., L(A + B) = 
L(A) + L(B) . Furthermore, multiplying L by some constant would change nothing in the 
equations so far. Choice of that constant simply involves choosing a system of units.  

Another thing that does not change the physical content of the Lagrangian is adding to 
it the total time derivative of a function of q and t. Suppose we define 

 L’( ݍ, , ݍ̇ ,ݍ )L = (ݐ , ݍ̇   . df(q,t) /dt +(ݐ

Then since 

න
݂݀
 ݐ݀

ݐ݀  = (ଶݐ)݂
୲మ

୲భ
−  (ଵݐ)݂

for the action we have 

′ܬ = ܬ + −(ଶݐ)݂  (ଵݐ)݂

The terms in f evaluated at the endpoints do not change when we perform the 
variation, so ߜJ′ = ߜJ. The two Lagrangians give the same variation and are thus equivalent in 
physical content.  

Now we take the simplest system, a particle moving without any interaction with the 
external world. We know its velocity is constant (the 1st law). Since all points in space are 
equivalent for such a particle, L cannot depend on its position x. It must therefore depend 
only on the velocity v. But it is a scalar, so it can depend only onv2. We have thatߜL/ߜxi = 0, 
so by Lagrange’s equation  

݀
 ݐ݀

൬
ܮ߲
ݒ߲

൰ = 0 

showing that ߲ܮ
߲௩

is constant. But 
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ܮ߲
ݒ߲

=
ܮ߲
ଶݒ߲

ଶݒ߲

ݒ߲
= 2

ܮ߲
ଶݒ߲ ݒ. .  

 we know that ݒ is constant. This means 

ܮ߲
߲௩మ

= const. 

We conclude that L = (const).ݒଶ. We choose the constant to bem/2  and have L = 1/2 
mv2,  

the kinetic energy T of the particle.  

Now we introduce interactions of the particle with its environment, In Newtonian mechanics 
these are described by forces, the connection to the motion being given by the 2nd law. We try 
to introduce these into to the Lagrangian by adding a term to the one we already have.  

Suppose the interaction term in L does not depend explicitly on the particle’s velocity. Then 

we will have ܮ߲
߲௩

 = ߲ܶ
߲௩

= mvi, and Lagrange’s equation becomes 

߲
߲௧

(ݒ݉) −
߲
߲௫

= 0 , 

or 

mݔప̈ = ߲
߲௫

. 

For this to give us the 2nd law we need the right side to be the force. We know this to 

be given by ߲(௫)
߲௫

, where U is the potential energy function for the force. We are thus led to 

the final form for the Lagrangian: 

 L(xi , vi,t) = T - U(xi,t).      (13)  

The possible dependence of U on t might arise if the locations of objects with which our 
particle interacts are changing with time in a known way. In most of our cases, U will not 
depend on t. 

4.4 SUMMARY:  

Here's a concise summary of the relationships between D'Alembert's principle, Hamilton's 
principle, modified Hamilton's principle, and Lagrange's equations: 

 D'Alembert's Principle:  

This principle states that the virtual work done by the impressed forces and the inertial 
forces in a system is zero. It's a generalization of static equilibrium to dynamics, 
expressed as a sum of forces times virtual displacements. It provides a foundation for 
deriving equations of motion. 
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 Hamilton's Principle:  

Hamilton's principle is a variational principle that states that the actual path taken by a 
system between two points in time is the one that minimizes the action integral. The 
action 1 is the integral of the Lagrangian (difference between kinetic and potential energy) 
over time. Hamilton's principle can be derived from D'Alembert's principle by integrating 
over time and introducing the concept of the Lagrangian. 

 Modified Hamilton's Principle:  

This principle extends Hamilton's principle to include non-conservative forces. It 
modifies the action integral to account for dissipative or external forces that do not arise 
from a potential. 

 Lagrange's Equations:  

Lagrange's equations are derived from Hamilton's principle. They provide a set of 
differential equations that describe the motion of a system in terms of generalized 
coordinates and the Lagrangian. These equations are particularly useful for systems with 
constraints, as they eliminate the need to explicitly consider constraint forces. 

 Essentially, D'Alembert's principle is a stepping stone to Hamilton's principle, which, 
through variational calculus, leads to Lagrange's equations. The modified version of 
Hamilton's principle allows for the inclusion of non-conservative forces. 

4.5 TECHNICAL TERMS:  

 D'Alembert's Principle, Hamilton's principle, Lagrange's equations. 

4.6 SELF-ASSESSMENT QUESTIONS: 

1) Deduce of Hamilton’s principle from D’Alembert’s principle. 

2) Write modified Hamilton’s principle. 

3) Write the Hamilton’s principle and Lagrange’s equations. 

4.7 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2) Fundamentals of Classical Mechanics by J.C. Upadhyaya. 

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-5 

HAMILTON’S PRINCIPLE 

5.0 AIM AND OBJECTIVES:  

To learn about  

 Lagrange’s Equation from Hamilton’s Principle 

 Lagrange’s Equation for Non-Conservative 

 Non-Holonomic System 

To establish a rigorous and elegant derivation of Lagrange's equations using the variational 
principle of Hamilton, to demonstrate the fundamental connection between the Lagrangian 
formulation and the principle of least action and to provide a deeper understanding of the 
theoretical foundations of Lagrangian mechanics. To show that Lagrange's equations are a 
direct consequence of minimizing the action integral, which is the integral of the Lagrangian 
over time. To use the calculus of variations to derive Lagrange's equations from the condition 
that the action is stationary. To illustrate the power of variational principles in deriving 
equations of motion. And to show that Hamilton's principle is a more fundamental way to 
describe the motion of a system, from which Lagrange's equations can be derived.To extend 
the applicability of Lagrange's equations to systems that include non-conservative forces 
(e.g., friction, drag) and non-holonomic constraints (e.g., rolling without slipping).To provide 
a method of analyzing a wider variety of realistic mechanical systems. To adapt the 
Lagrangian formalism to handle situations where the usual assumptions of conservative 
forces and holonomic constraints do not hold.To modify Lagrange's equations to incorporate 
the effects of non-conservative forces by introducing generalized forces. To develop 
techniques for handling non-holonomic constraints, which cannot be expressed as simple 
equations relating the generalized coordinates and to derive equations of motion that 
accurately describe the behavior of systems with dissipative forces and constraints that limit 
the possible virtual displacements.To allow the use of Lagrange's equations to solve real 
world problems that include friction, or other non conservative forces, and also systems that 
include constraints that are inequalities and to be able to create a generalized form of 
Lagrange's equations that can be used in a wide range of mechanical systems. 

STRUCTURE: 

5.1 Lagrange’s Equation from Hamilton’s Principle 

5.2 Lagrange’s Equation for Non-Conservative 

5.3 Lagrange’s Equation for Non-Holonomic System 

5.4 Summary 
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5.5 Technical Terms 

5.6 Self-Assessment Questions 

5.7 Suggested Readings 

5.1  LAGRANGE'S EQUATION FROM HAMILTON'S PRINCIPLE: 

The Lagrangian L is a function of generalized coordinates ݍ , and generalized velocities 
 ,.̇and time t, i.eݍ

ࡸ = ,ଶݍ,ଵݍ) ࡸ . . . , ,ݍ … ݍ, , ,ଵ̇ݍ ,ଶ̇ݍ . . . , ̇ݍ , … , ̇ݍ ,  (ݐ

Fig. 1.5:δ variation - extremum path 

If the Lagrangian does not depend on time t explicitly, then the variation δL can be 
written as 

ܮߜ = ∑ డ
డೖ


ୀଵ δݍ + ∑ డ

డೖ̇
ே
ୀଵ δ̇ݍ    (1) 

Integrating both sides from ݐ = ݐ ݐ ଵݐ  =  ଶ, we getݐ 

න ݐ݀ ܮߜ
௧మ

௧భ
= න 

ܮ߲
ݍ߲

δݍ ݀ݐ


௧మ

௧భ
+ න 

ܮ߲
̇ݍ߲

δ̇ݍ ݀ݐ
௧మ

௧భ
 

But in view of the Hamilton's principle 

ߜ න ݐ݀ ܮ
௧మ

௧భ
= 0 

Therefore,  ∫ ∑ డ
డೖ

δݍ ݀ݐ
௧మ
௧భ

+ ∫ ∑ డ
డೖ̇ δ̇ݍ ݀ݐ௧మ

௧భ
= 0   (2) 

where δ̇ݍ = ௗ
ௗ௧

(δݍ ) 

Integrating by parts the second term on the left hand side of eq. (2), we get 

∫ ∑ డ
డೖ̇ δ̇ݍ ௧మݐ݀ 

௧భ
= ∑ ቂ డ

డೖ̇
δݍ ቃ

௧భ

௧మ
−   ∫ ∑ ௗ

ௗ௧
ቀ డ
డೖ̇

ቁ δݍ ݀ݐ
௧మ
௧భ

 (3) 
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At the end points of the path at the times ݐଵand ݐଶ, the coordinates must have definite 
values ݍ(ݐଵ)and ݍ(ݐଶ)respectively, i.e., ݍߜ(ݐଵ) = ݍߜ(ݐଶ)= 0 (Fig. 1.5) and hence 


ܮ߲
 ݍ߲

δݍ ൨
 ௧భ

௧మ
= 0 

Therefore, eq. (2) takes the form 

∫ ∑ డ
డೖ 

 δݍ ݀ݐ
௧మ
௧భ

− ∫ ∑ ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ δݍ ݀ݐ = 0
௧మ
௧భ

  

∑ ∫ ቂ ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ 

ቃ δݍ ݀ݐ = 0௧మ
௧భ     (3) 

For holonomic system, the generalized coordinates ݍߜ are independent of each other. 
Therefore, the coefficient of each ݍߜ must vanish, i.e., 

ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ 

= 0     (4) 

where k =1, 2,...., n are the generalized coordinates.  

Eqs. (4) are the Lagrange's equations of motion 

5.2 LAGRANGE’S EQUATION FOR NON-CONSERVATIVE AND NON-
 HOLONOMIC SYSTEM: 

We deduced Hamilton's principle from D'Alernbert's principle for conservative forces. 
If the forces are not conservative,  

ௗ
ௗ௧

[∑ ݉ݎప̇ ∙ [ݎߜ = ܶߜ +  (5)      ܹߜ

where ߜ = ܶߜ ∑ ଵ
ଶ
݉ݒଶand ܹߜ = ܨ∑ ∙ ݎߜ = virtual work done 

The integration of (5) from ݐ = ݐ ଵtoݐ  = (ଵݐ)ݎߜ ଶ with the conditionݐ   = (ଶݐ)ݎߜ  =
 0 at the end points, we get 

∫ ܶ]ߜ + ௧మݐ݀ [ܹ
௧భ

= ߜ ݎ 0 ∫ [ܶ + ௧మݐ݀ [ܹ
௧భ

= 0    (6) 

Eq. (6) is known as extended Hamilton's principle. Here Fi are the non-conservative 
forces. We can write as  

ܹߜ = ∑ ܨ ∙ ݎߜ = ∑ ܨ ∙
డ
డೖ, ݍߜ = ∑ ݍߜܩ    (7) 

where ܩare the components of generalized force 

Thus, the extended Hamilton's principle (6) gives 

ߜ ∫ ௧మݐ݀ ܶ
௧భ

+ ∫ ∑ ݍߜܩ ݐ݀  = 0௧మ
௧భ

    (8) 

Kinetic energy T in general is function of ݍand ݍ̇and hence 
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ߜ න ݍ)ܶ ݐ݀(̇ݍ,
௧మ

௧భ
= න ,ݍ)ܶߜ ݐ݀(̇ݍ

௧మ

௧భ
= න 

߲ܶ
ݍ߲

ݍߜ +
߲ܶ
̇ݍ߲

̇൨ݍߜ


ݐ݀
௧మ

௧భ
 

= න 
߲ܶ
ݍ߲

ݍߜ


ݐ݀
௧మ

௧భ
+ 

߲ܶ
̇ݍ߲

൨ݍߜ
௧భ

௧మ



− න
݀
ݐ݀ 

߲ܶ
̇ݍ߲

൨ ݐ݀ݍߜ
௧మ

௧భ
 

= ∫ ∑ ቈ డ்
డೖ

− ௗ
ௗ௧
ቂ డ்
డೖ̇

ቃ ݍߜ ௧మݐ݀
௧భ

[∵ (ଵݐ)ݍߜ = (ଶݐ)ݍߜ  =  0](9) 

Thus eq. (8) is 

∫ ∑ ቂ డ்
డೖ

− ௗ
ௗ௧
ቂ డ்
డೖ̇

ቃ + ቃܩ ݍߜ ௧మݐ݀
௧భ

= 0   (10) 

Since the constraints are holonomic, all ݍߜare independent and hence the integral 
will vanish, if 

డ்
డೖ

− ௗ
ௗ௧
ቂ డ்
డೖ̇

ቃ + ܩ = ௗ ݎ  0
ௗ௧
ቂ డ்
డೖ̇

ቃ − డ்
డೖ

=    (11)ܩ

These are the Lagrangian equations for holonomic and non-conservative system. 

5. 3 LAGRANGE'S EQUATIONS OF MOTION FOR NON-HOLONOMIC 
SYSTEMS: 

In the derivation of Lagrange's equations from D'Alembert's principle or Hamilton's 
principle, we need the requirement of holonomic constraints at the final step, when the 
variations 8qk are considered to be independent of each other. In case of non-holonomic 
systems, the generalized coordinates are not independent of each other. However, we can 
treat certain types of non-holonomic systems for which the equations of constraint can be put 
in the form 

∑ ܽ݀ݍ + ܽ௧݀ݐ = 0     (12) 

These equations of constraints connect the differentials ݀ݍ′s by linear relations. For each l 
there is one equation and we assume that there are m such, equations for l= 1, 2,...., m 

In case of ߜ -variation, the virtual displacements ݍߜare taken at constant times and hence 
the m equations of constraints, consistent for virtual displacements, are 

∑ ܽݍߜ = 0       (13) 

Eq. (13) now can be used to reduce the number of virtual displacements to 
independent ones. The procedure applied for this purpose is called Lagrange's method of 
undetermined multipliers. 

If eq. (13) is valid, then the multiplication of this equation by ߣ an undetermined 
quantity, yields 

ߣ ∑ ܽݍߜ = 0  ∑ݎ ݍߜܽߣ = 0       (14) 
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where ߣ(1, 2, . . . , m) are undetermined quantities and they are functions in general of 
the coordinates and time: Summing eq. (40) over l and then integrating the sum with respect 
to time from ݐ = ݐ ଵtoݐ  =  ଶ we getݐ 

∫ ∑ ݐ݀ݍߜܽߣ = 0 
௧మ
௧భ

     (14) 

We assume the Hamilton's principle 

ߜ ∫ ௧మݐ݀ ܮ
௧భ

= 0       (15) 

to hold for the non-holonomic system. This implies that 

∫ ∑ ቂ డ
డೖ

− ௗ
ௗ௧
ቀ డ
డೖ̇

ቁቃ ݍߜ ௧మݐ݀
௧భ

= 0    (16) 

adding (14) and (16), we obtain 

∫ ∑ ቂ డ
డೖ

− ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ+ ∑ ܽߣ ቃ ݍߜ ௧మݐ݀
௧భ

= 0  (17) 

Still, all ݍߜ′s (݇ = 1,2, . . . , n)  are not independent of each other. First n — m of 
these ݍߜ′s may be chosen independently and the last m of these ݍߜ′sare then fixed by the 
eq. (13). 

Till now the values of ߣhave not been specified. We choose the ߣ′ݏ such that 

డ
డೖ

− ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ + ∑ ܽߣ
ୀଵ = 0    (18) 

where k = n- m + 1, n- m + 2, ..., n. Thus eqs. (18) will determine m values of ߣand then eq. 
(17) can be written as 

∫ ∑ ቂ డ
డೖ

− ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ + ∑ ܽߣ ቃ ିݍߜ
ୀଵ ௧మݐ݀

௧భ
= 0  (19) 

where the 8qk's (k =1, 2, ..., n - in), involved, are independent ones. Therefore, for the 
integrand in (19) to vanish 

డ
డೖ

− ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ + ∑ ܽߣ
ୀଵ = 0    (20) 

which is n-m equations for k =1, 2, ..., n- m. 

Adding eqs. (18) and (20), we get the complete set of the Lagrange's equations for the non-
holonomic system, i.e. 

ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ

= ∑ ܽߣ
ୀଵ      (21) 

where k = 1, 2, ...n. 

This gives us n equations, but there is n + m unknowns, n coordinates ݍ and m Lagrange's 
multipliers. The remaining m unknown ݍ′ݏ are determined from m equations of constraints 
eq. (12), written in the following form of m first-order differential equations 

∑ ܽݍ̇ + ܽ௧ = 0      (22) 
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5.4 SUMMARY: 

Lagrange's Equation from Hamilton's Principle:  

 This derivation demonstrates that Lagrange's equations arise directly from the 
principle of least action, which states that a system's path minimizes the action 
integral. It uses variational calculus to show that Lagrange's equations are a 
consequence of this minimization, establishing a fundamental link between 
Lagrangian mechanics and variational principles. 

Lagrange's Equation for Non-Conservative, Non-Holonomic Systems:  

 This extension adapts Lagrange's equations to handle real-world complexities. It 
incorporates non-conservative forces (like friction) through generalized forces and 
addresses non-holonomic constraints (like rolling without slipping) that cannot be 
expressed as simple equations. This modification allows the Lagrangian formalism to 
be applied to a broader range of mechanical systems, including those with dissipative 
forces and complex constraints. 

 In this lesson we learn about the complete derivation of Lagrange's Equation from 
Hamilton's Principle and Lagrange's Equation for Non-Conservative, Non-Holonomic 
Systems. 

5.5 TECHNICAL TERMS: 

 Lagrange's Equation from Hamilton's Principle and Lagrange's Equation for Non-
 Conservative, Non-Holonomic Systems 

5.6 SELF-ASSESSMENT QUESTIONS 

1) Derive Lagrange's Equation from Hamilton's Principle. 

2) Lagrange's Equation for Non-Conservative, Non-Holonomic Systems 

5.7 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2)  Fundamentals of Classical Mechanics by J.C. Upadhyaya. 

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 

 

Prof. Ch. Linga Raju 



LESSON-6 

APPLICATIONS OF HAMILTON PRINCIPLE 

6.0 OBJECTIVES: 

To learn about 

 Simple applications of Hamilton principle- linear harmonic oscillator 

 Simple pendulum, ∆-variation 

 Principle of Least Action 

To demonstrate the application of Hamilton's principle to a fundamental and well-understood 
system: the linear harmonic oscillator. To illustrate how Hamilton's principle can be used to 
derive the equations of motion for a simple system. To show the elegance and effectiveness 
of the Lagrangian and Hamiltonian approach, compared to newtonian methods. To express 
the Lagrangian for the linear harmonic oscillator in terms of its kinetic and potential energies. 
To apply Hamilton's principle to find the path that minimizes the action integral. To derive 
the well-known equation of motion for the linear harmonic oscillator. To reinforce the 
understanding of how to use Hamilton's principle. To apply Hamilton's principle and the 
concept of variations (specifically, ∆-variation) to derive the equation of motion for a simple 
pendulum. To illustrate the use of generalized coordinates and the Lagrangian formalism in a 
system with constraints. To show how to apply the calculus of variations to a real world 
problem. To express the Lagrangian for the simple pendulum in terms of its angular 
displacement. To perform the ∆-variation of the action integral. To derive the equation of 
motion for the simple pendulum. To show how to handle the constraint of the pendulums 
length within the lagrangian framework. To understand the fundamental principle that 
governs the dynamics of physical systems. To establish the connection between the 
Lagrangian formulation and the concept of minimizing the action. To show how the path a 
system takes through configuration space, is the path that minimizes the action. To define the 
action integral and its significance. To explain that the actual path taken by a system is the 
one that makes the action integral stationary (usually a minimum).To demonstrate the 
relationship between the principle of least action and Hamilton's principle. To show how this 
principle can be used to derive the equations of motion for a system. To show the connection 
between this classical principle, and its more modern applications in quantum mechanics. 

STRUCTURE: 

6.1 Simple application of the Hamilton principle- linear harmonic oscillator 

6.2 Simple Pendulum 

6.3 ∆-Variation 
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6.4  Principle of Least Action 

6.5   Summary 

6.6  Technical Terms 

6.7  Self-Assessment Questions 

6.8   Suggested Readings 

6.1 SIMPLE APPLICATION OF THE HAMILTON PRINCIPLE-LINEAR 

 HARMONIC OSCILLATOR: 

Linear Harmonic Oscillator The linear harmonic oscillator is described by the Schrodinger 
equation 

 (1) 

for the Hamiltonian  

   (2) 

It comprises one of the most important examples of elementary Quantum Mechanics. There 
are several reasons for its pivotal role. The linear harmonic oscillator describes vibrations in 
molecules and their counterparts in solids, the phonons. Many more physical systems can, at 
least approximately, be described in terms of linear harmonic oscillator models. However, the 
most eminent role of this oscillator is its linkage to the boson, one of the conceptual building 
blocks of microscopic physics. For example, bosons describe the modes of the 
electromagnetic field, providing the basis for its quantization. The linear harmonic oscillator, 
even though it may represent rather non-elementary objects like a solid and a molecule, 
provides a window into the most elementary structure of the physical world. The most likely 
reason for this connection with fundamental properties of matter is that the harmonic 
oscillator Hamiltonian (2) is symmetric in momentum and position, both operators appearing 
as quadratic terms. The important role of the harmonic oscillator certainly justifies an 
approach from two perspectives, i.e., from the path integral (propagator) perspective and 
from the Schrodinger equation perspective. The path integral approach gave us a direct route 
to study time-dependent properties, the Schrodinger equation approach is suited particularly 
for stationary state properties. Both approaches, however, yield the same stationary states and 
the same propagator, as we will demonstrate below. The Schrodinger equation approach will 
allow us to emphasize the algebraic aspects of quantum theory. This Section will be the first 
in which an algebraic formulation will assume center stage. In this respect the material 
presented provides an important introduction to later Sections using Lie algebra methods to 
describe more elementary physical systems. Due to the pedagogical nature of this Section we 
will link carefully the algebraic treatment with the differential equation methods used so far 
in studying the Schrodinger equation description of quantum systems. 
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 We consider first the stationary states of the linear harmonic oscillator and later 
consider the propagator which describes the time evolution of any initial state. In the 
framework of the Schrodinger equation the stationary states are solutions of (1) of the form  

    (3) 

where  

     (4) 

Due to the nature of the harmonic potential which does not allow a particle with finite energy 
to move to arbitrarily large distances, all stationary states of the harmonic oscillator must be 
bound states and, therefore, the natural boundary conditions apply  

     (5) 

Equation (3) can be solved for any E ∈ R, however, only for a discrete set of E values can the 
boundary conditions (5) be satisfied. In the following algebraic solution of (3) we restrict the 
Hamiltonian Hˆ and the operators appearing in the Hamiltonian from the outset to the space 
of functions 

 (6) 

where C∞ denotes the set of functions which together with all of their derivatives are 
continuous. It is important to remember this space restriction, in which the operators used 
below, act. We will point out explicitly where assumptions are made which built on this 
restriction. If this restriction would not apply and all functions f : R → R would be admitted, 
the spectrum of Hˆ in (3) would be continuous and the eigen functions φE(x) would not be 
normalizable. 

6.2 SIMPLE PENDULUM: 

Here, θ is the generalized coordinate. The velocity of the ball is lθ' acting perpendicular to OP 
where l is the length of the string of the pendulum (see, Fig 6.1). A simple pendulum 
oscillating in a vertical plane constitutes a conservative holonomic dynamical system. Here, 
Kinetic Energy = T = (1/2)m݈ଶθ̇ଶ, m is the mass of the ball. 

Potential Energy = V = mgh = mgl(1- cosθ). 

Therefore, the Lagrangian of the system is L = T - V = (1/2)m݈ଶθ̇ଶ,  - mgl(1- cosθ). 

Since the system is scleronomous and conservative, 

H = T + V = (1/2)m݈ଶθ̇ଶ + mgl(1 - cosθ). 

Generalized momentum  = ∂L/∂ θ̇ = m݈ଶ θ̇or  θ̇ = /m݈ଶ. 
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H = (1/2)m݈ଶ(/m݈ଶ)² + mgl(1 - cosθ) = (1/2)(/m݈ଶ)+ mgl(1-cosθ) = H(θ, ). 

Hamilton's equations of motion are given by:  

 θ̇ = பୌ
பಐ

=  ,./݈݉ଶ, i.e = m݈ଶ θ̇ and  

̇ = −
∂H
∂θ =  θ݊݅ݏ݈݃݉−

Therefore ݈݉ଶθ̈ = θ or θ̈݊݅ݏ݈݃݉− = − ௦


≈

θ where θ is very small. 

Time period is given by 2ߨට 

 , g is the acceleration due to gravity. 

 

 

   Fig: 6.1 

6.3 ∆-VARIATION: 

The ߜ-variation that we considered is refers to the variation in a quantity at the same instant 
of time. The varied path in configuration space always terminates at the end-points ݐଵܽ݊݀ ݐଶ 
such that ݍߜ(ݐଵ) = (ଶݐ)ݍߜ = 0. The ∆-variation, a more general type of variation of the 
path of the system, is one in which time as well as position co-ordinates vary in the 
configuration space. At the end-points of the path, the position co-ordinates are all kept fixed 
while the time co-ordinate may change. Fig. 6.2 illustrates the ∆-variation of a co-ordinateݍ 
in the configuration space.  

Let ABC be the actual path and ܣᇱ,ܤᇱ ܽ݊݀ ܥᇱthe varied path. The end-points of the path A 
and Ctake the positionsܣᇱ  and ܥᇱ after time∆ݐ, such that there is on change in position  
co-ordinates, ie, ∆ݍ(1) = (2)ݍ∆  = 0. The point Bon theactual path now goes over to the 
point ܤᇱ. on the varied path such that 

 (8) 
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Fig. 6.2: Illustration of ∆-variation in Configuration Space 

 

       (9) 

(10) 
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6.4 PRINCIPLE OF LEAST ACTION: 

According to the principle of least action 

∆∫ ∑ ݐ̇݀ݍ
௧మ
௧భ

= 0     (11) 

where the quantity ܹ = ∫ ∑ ̇ݍ ௧మݐ݀
௧భ

is sometimes called abbreviated action. 

Eq. (11) was established by Maupertuis (1668-1759) and therefore it is usually referred 
Maupertuis principle of least action. 

Proof: Let us consider Hamilton's principle function (or action integral) S, given by 

ܵ = ∫ ௧మݐ݀ܮ
௧భ

      (12) 

The ∆-variation of S is  

∆ܵ = ∆න ݐ݀ܮ
௧మ

௧భ
= ߜ + ݐ∆

݀
൨ݐ݀

න ݐ݀ܮ
௧మ

௧భ
 

= ߜ න ݐ݀ܮ
௧మ

௧భ
+ න (ܮ)݀ ݐ∆ =

௧మ

௧భ
ߜ න ݐ݀ܮ

௧మ

௧భ
+ ௧భ[ݐ∆ܮ]

௧మ 

= න ݐ݀ܮߜ
௧మ

௧భ
+ ௧భ[ݐ∆ܮ]

௧మ[∵ (ݐ݀)ߜ = 0] 

= ∫ ∑ ቂ డ
డೖ

ݍߜ  + డ
డೖ̇

̇ቃݍߜ  ௧మݐ݀
௧భ

+ ௧భ[ݐ∆ܮ]
௧మ  (13) 

In the present case ݍߜ ≠ 0 at the end points, hence of ߜ ∫ ௧మݐ݀ܮ
௧భ

is not equal to zero. 

Now, according to Lagrange's equations, we have 

ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ − డ
డೖ

= డ  ݎ 0
డೖ

= ௗ
ௗ௧
ቀ డ
డೖ̇

ቁ  (14) 

Also   ߲ݍ̇ = ௗ
ௗ௧

 (15)     [ݍߜ]

Using (14) and (15), the quantity in the first term of eq. (13) is 

డ
డೖ

ݍߜ  + డ
డೖ̇

̇ݍߜ  = ௗ
ௗ௧
ቂ డ
డೖ̇

ቃ ݍߜ + డ
డೖ̇

ௗ
ௗ௧

[ݍߜ] =  ௗ
ௗ௧
ቂ డ
డೖ̇

ቃݍߜ = ௗ
ௗ௧

  [ݍߜ ]

          (16) 

But in view of ∆ − operation equation 

ݍ∆ = ݍߜ + ݐ∆ ௗೖ
ௗ௧

ݍߜ ݎ  = ݍ∆ − ̇ݍ ݐ∆ ݍߜ ݎ  = ݍ∆ −  (17)  ݐ∆̇ݍ

Hence  డ
డೖ

ݍߜ  + డ
డೖ̇

̇ݍߜ  = ௗ
ௗ௧

−[ݍ∆] ௗ
ௗ௧

 (18)  [ݐ∆̇ݍ]
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Thus eq. (12) is  

∆ܵ = ∆න ݐ݀ܮ
௧మ

௧భ
= න 

݀
ݐ݀

−[ݍ∆]
݀
ݐ݀

൩[ݐ∆̇ݍ]


ݐ݀
௧మ

௧భ
+ ௧భ[ݐ∆ܮ]

௧మ 

  = ∑ ∫ ቂ ௗ
ௗ௧

(ݍ∆) − ௗ
ௗ௧

ቃ(ݐ∆̇ݍ)
௧మ
௧భ + ௧భ[ݐ∆ܮ]

௧మ 

= ∑ ௧భ[ݍ∆]
௧మ

 −∑ ௧భ[ݐ∆̇ݍ]
௧మ

 + ௧భ[ݐ∆ܮ]
௧మ   (19) 

As ∆ݍ = 0 at the end points, ௧భ[ݍ∆]
௧మ = 0 

Therefore equation (19) is 

∆න ݐ݀ܮ
௧మ

௧భ
= ൭ܮ −ݍ̇



൱∆ݐ൩
௧భ

௧మ

 

or   ∆∫ ௧మݐ݀ܮ
௧భ

= ௧భ[ݐ∆ܪ]−
௧మ  [∵ ܪ = ∑ ̇ݍ −   (20)  [ܮ

Now, if we restrict to systems for which డு
డ௧

= 0and to variations for which H remains 

constant (conservative systems), then 

∆∫ ௧మݐ݀ܪ
௧భ

= ∫ ௧మ(ݐ∆)݀ܪ
௧భ

= ௧భ[ݐ∆ܪ]
௧మ    (21) 

Substituting for [ݐ∆ܪ]௧భ
௧మin eq. (20), we get 

∆න ݐ݀ܮ
௧మ

௧భ
= −∆න ݐ݀ܪ

௧మ

௧భ
න∆ ݎ   ܪ] + ݐ݀[ܮ

௧మ

௧భ
= 0 

or   ∆∫ ∑ ̇ݍ ௧మݐ݀
௧భ

= 0  [∵ ܪ = ∑ ̇ݍ −  (22)  [ܮ

This is what is known as principle of least action. 

The quantity ∫ ∑ ̇ݍ ௧మݐ݀
௧భ

= W is called Hamilton's characteristic function. Hence 

the principle of least action can be stated as 

∆ܹ = ∆∫ ∑ ̇ݍ ௧మݐ݀
௧భ

= 0    (23) 

6.5 SUMMARY: 

Hamilton's principle is used to derive the equation of motion for a simple harmonic 
oscillator. By expressing the system's Lagrangian (kinetic minus potential energy) and 
applying the principle of least action, the familiar equation of motion for sinusoidal 
oscillation is obtained. This demonstrates the power of Hamilton's principle in solving 
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fundamental problems in mechanics. Hamilton's principle is applied to analyze the motion of 
a simple pendulum. The ∆-variation method is used to determine the path that minimizes the 
action integral, leading to the pendulum's equation of motion. This illustrates how variational 
calculus is utilized within Hamilton's principle to solve for the dynamics of constrained 
systems. This is the core concept underlying Hamilton's principle. It states that the actual path 
taken by a physical system between two points in time is the one that minimizes the action, 
which is the integral of the Lagrangian over time. 1 It is a fundamental variational principle 
that governs the dynamics of classical systems, and is the basis for the derivation of 
Lagrange's equations, and Hamilton's equations.    

6.6 TECHNICAL TERMS:  

 Simple applications of Hamilton principle- linear harmonic oscillator, simple 

 pendulum, ∆-variation and principle of Least Action. 

6.7 SELF-ASSESSMENT QUESTIONS: 

1) Show linear harmonic oscillator as a simple application of Hamilton principle. 

2) Derive simple pendulum, ∆-variation. 

3) Write the Principle of Least Action. 

6.8 SUGGESTED READINGS:  

1) Classical Mechanics: H. Goldstein  

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma  

 

 

Prof. Ch. Linga Raju 



LESSON-7 

CANONICAL TRANSFORMATIONS 

7.0 AIM AND OBJECTIVES:  

To learn about- 

 Equations of canonical transformation (Generating functions) 

 Examples of canonical transformations for a harmonic oscillator. 

To understand how to transform a set of canonical coordinates (position and momentum) into 
a new set while preserving the Hamiltonian structure of the system.  To develop the ability to 
find transformations that simplify the equations of motion or reveal hidden symmetries. To 
learn about the concept of generating functions, which provide a systematic way to define 
and implement canonical transformations. To define and understand the conditions for a 
transformation to be canonical. To introduce the four types of generating functions (F1, F2, 
F3, F4) and their respective roles in defining canonical transformations. To derive the 
equations that relates the old and new canonical coordinates using the generating functions. 
To learn how to choose appropriate generating functions to achieve desired transformations. 
To be able to prove that a transformation is canonical. To understand the importance of 
canonical transformations in Hamiltonian mechanics. To illustrate the application of 
canonical transformations in a concrete and solvable system, the harmonic oscillator. To 
demonstrate how canonical transformations can simplify the analysis of the harmonic 
oscillator and reveal its underlying structure. To show the practical use of generating 
functions. To find specific canonical transformations that transform the harmonic oscillator's 
Hamiltonian into a simpler form (e.g., a constant).To use generating functions to derive the 
equations for these transformations. To analyze the physical interpretation of the transformed 
coordinates and momenta. To understand how canonical transformations can be used to solve 
the harmonic oscillator's equations of motion. To see how a well chosen canonical 
transformation can greatly simplify a problem. To reinforce the understanding of canonical 
transformation through a practical example. 

STRUCTURE: 

7.1 Canonical Transformations 

 7.1.1 Generating Functions 

7.2 Examples of Canonical Transformations for a Harmonic Oscillator 

7.3 Summary 

7.4 Technical Terms 

7.5 Self-Assessment Questions 

7.6 Suggested Readings  
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7.1 CANONICAL TRANSFORMATIONS: 

In several problems, we may need to change one set of position and momentum coordinates 
into another set of position and momentum coordinates. Suppose that ݍ and are the old 
position and momentum coordinates and ܳ  and ܲ are the new ones. Let these coordinates 
be related by the following transformations: 

.
ܲ  =  ܲ(ଵ, ,ଶ … . ,  ,ଵݍ, ,ଶݍ … . , ݍ , ݐ
ܳ  =  ܳ(ଵ, ,ଶ … . , , ,ଵݍ ,ଶݍ … . , ݍ , ݐ

ቋ    (1) 

Now, if there exists a Hamiltonian ܪሖ  in the new coordinates such that 

ܲ = − డுᇱ
డொೖ

andܳ = డுᇱ
డೖ

̇̇
      (2) 

where    ܪᇱ = ∑ ܲܳ − ̇′ܮ
ୀଵ      (3) 

and ܮ′ substituted in the Hamilton’s principle 

ߜ ∫ ݐᇱ݀ܮ = 0        (4) 

Gives the correct equations of motion in terms of the new coordinates ܲ and ܳ , then the 
transformations (1) are known as canonical (or contact) transformations. 

7.1.1 Generating Functions: 

For canonical transformations, the Lagrangian L in  , ᇱ in ܲ,ܳܮ  coordinates andݍ  
coordinates must satisfy the Hamilton’s principle, i.e., 

ߜ ∫ ௧మݐ݀ ܮ
௧భ

= 0 and ߜ ∫ ௧మݐ݀ ′ܮ
௧భ

= 0     (5) 

But ܮ = ∑ ̇ݍ
ୀଵ − ᇱܮ and ܪ = ∫ ܲܳ̇


ୀଵ  ,′ܪ−

Therefore,ߜ ∫ ⌈∑ ̇ݍ ݐ݀ ⌈ܪ− = 0௧మ
௧భ

    (6) 

           and           ߜ ∫ ⌈∑ ̇ݍ − ݐ݀ ⌈′ܪ = 0௧మ
௧భ

   (7) 

subtracting eq. (7) from eq. (6), we get  

ߜ ∫ ⌈(∑ ̇ݍ (ܪ− − (∑ ̇ݍ ݐ݀ ⌈(ᇱܪ− = 0௧మ
௧భ

   (8) 

 In ߜ ∫ ݐ݂݀ = 0 is to be satisfied, in general, by ݂ =  is an arbitrary ܨ where ,ݐ݀/݂݀
function. Therefore, 

ߜ ∫ ௗி
ௗ௧
ݐ݀ = 0௧మ

௧భ
       (9) 

where                         ௗி
ௗ௧

= ܮ −  (10a)     ′ܮ

or            ௗி
ௗ௧

= (∑ ݍ̇ − ܪ )− ( ܲܳ̇  (b 10)   (′ܪ−
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 The function F is known as the generating function. The meaning of the name will be 
clear later on. The first bracket in (10) is a function of  ݍ,  and ݐ and the second as a 
function ܲ,ܳ  and ܨ.ݐ is therefore, in general, a function of (4݊ + 1) variables are subjected 
to the transformation equation (1) and therefore ܨ may be regarded as the function of   
(2݊ + 1) variables, comprising ݐ and any 2݊ of the , ,ݍ ܲ,ܳ . Thus we see that ܨ can be 
written as a function of (2݊ + 1) independent variables in the following four forms: 

,ܳݍ)ଵܨ  (݅) , ,(ݐ ,ݍ) ଶܨ(݅݅) ܲ, )ଷܨ(݅݅݅)(ݐ ,ܳ , ,)ସܨ(ݒ݅)  and (ݐ ܲ,  (17) (ݐ

The choice of the functional form of the generating function ܨ depends on the problem under 
consideration. 

Case I: if we choose the form (i), i.e., 

ଵܨ = ,ଶݍ,ଵݍ)ଵܨ … , ,ݍ … ݍ ,ܳଵ,ܳଶ, …ܳ , … ,ܳ ,  (18)    (ݐ

Then     ௗிభ
ௗ௧

= ∑ డிభ
డೖ

ݍ̇ +  ∑ డிభ
డொೖ

ܳ̇ + డிభ
డ௧       (19) 

Subtracting (19) from (16 b), we can write 

൬ −
ଵܨ߲
ݍ߲

൰


ݍ̇ −൬ ܲ +
ଵܨ߲
߲ܳ

൰ ܳ̇ + ᇱܪ − ܪ −
ଵܨ߲
ݐ߲ = 0



 

or  

൬ −
ଵܨ߲
ݍ߲

൰


ݍ݀ −൬ ܲ +
ଵܨ߲
߲ܳ

൰ ݀ܳ + ᇱܪ] − ܪ −
ଵܨ߲
ݐ߲ ݐ݀[ = 0



 

As ݍ ,ܳ  and t may be regarded as independent variables,     (20) 

 =
߲
ݍ߲

,ܳݍ)ଵܨ , ,(ݐ ܲ = −
߲
߲ܳ

,ܳݍ)ଵܨ ,  (ݐ

and   ܪᇱ ܪ− = డ
డ௧
,ܳݍ)ଵܨ ,  (21)    (ݐ

In principle, first equation of (21) may be solved to give  

   ܳ = ܳ(ݍ, ,  (22)     (ݐ

Substituting this in the second equation of (21), one gets 

   ܲ = ܲ(ݍ, ,  (23)     (ݐ

In fact, these are the transformation equations (1). Thus we find that transformation equations 
can be derived from knowledge of the function F. This is why F is known as the generating 
function of the transformation. 

Case II: If the generating function is of the type ܨଶ(ݍ,  ܲ,  then it can be dealt with by ,(ݐ
affecting a Legendre transformation (7): 

   ݂ᇱ − ݑ where ,ݔݑ = డ
డ௫
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Here, since         ܲ =  − డிభ
డொ಼

, we have ݑ = − ܲ,ݔ = ܳ, ݂ᇱ = ݂ ݀݊ܽ 2ܨ =  ଵܨ

Therefore,                 ܨଶ(ݍ, ܲ, (ݐ = ,ܳݍ)ଵܨ , (ݐ + ∑ ܲܳ   (24) 

Evidently, ܨଶ is independent of ܳ  variables, because 

డிమ
డொೖ

= డிభ
డொ಼

+ ܲ = − ܲ + ܲ = 0 as డிభ
డொ಼

= − ܲ in (21) 

Using eq. (16) 

൭̇ݍ − ܪ


൱ − ൭ ܲܳ̇ ᇱܪ−



൱ =
݀
ݐ݀ ଶܨ] − ܲܳ_ܭ



] 

or     ௗிమ
ௗ௧

= ∑ ݍ̇ + ∑ ܳܲ̇ + ᇱܪ ܪ−    (25) 

Total time derivative of ܨଶ(ݍ, ܲ,   is (ݐ

   ௗிమ
ௗ௧

= ∑ డிమ
డೖ

ݍ̇ + ∑ డிమ
డೖ

ܲ̇ + డிమ
డ௧    (26) 

From (25) and (26), we get 

    = డிమ
డೖ

, ܳ = డிమ
డೖ

ᇱܪ ݀݊ܽ ܪ− = డிమ
డ௧

  (27) 

If we look (21) and (27), we find డிభ
డ௧

= డிమ
డ௧

.  Futher as డிభ
డೖ

= డிమ
డೖ

, first equation of (21) and 

that of (27) are identical. Second equation of (27) appears to be different from the second 
equation of (21), but in fact it is a rearrangement of it. 

Case III: We can again relate the third type of generating function (ܨଷ(,ܳ ,  to by a (ݐ

Legendre transformation in view of the relation  = డிభ
డೖ

. Hence ݑ = , ݔ = ݍ ,݂ᇱ =  ଷ andܨ

݂ =   ,ଵ. Thereforeܨ

,ܳ)ଷܨ , (ݐ = ,ܳݍ)ଵܨ , (ݐ −∑ ݍ      (28) 

orܨଵ(ݍ,ܳ , (ݐ = ,ܳ)ଷܨ , (ݐ + ∑ ݍ  

Using eq. (16), we have 

൭̇ݍ − ܪ


൱ − ൭ ܲܳ̇ ᇱܪ−



൱ =
ଵܨ݀
ݐ݀ =

݀
ݐ݀ ଷܨ) + ݍ) 

or ௗிయ
ௗ௧

= −∑ ݍ̇ − ∑ ܲܳ̇ + ᇱܪ − ܪ  

Also, ௗிయ
ௗ௧

= ∑ డிయ
డೖ

̇ + ∑ డிయ
డொೖ

ܳ̇ + డிయ
డ௧  

ݍ = − డிయ
డೖ

, ܲ = − డிయ
డொೖ

ᇱܪ ݀݊ܽ  − ܪ = డிయ
డ௧

     (29) 
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Case IV: Using Legendre transformations, the generating function ܨସ(, ܲ ,  can be (ݐ
connected to ܨଵ(ݍ,ܳ ,  as (ݐ

,)ସܨ   ܲ, (ݐ = ,,ܳݍ)ଵܨ (ݐ + ∑ ܲܳ −∑ ݍ   (30) 

Using eq. (16), we have  

൭̇ݍ − ܪ


൱ − ൭ ܲܳ̇ ᇱܪ−



൱ =
݀
ݐ݀ ସܨ) −ݍ



) 

orௗிర
ௗ௧

= −∑ ̇ݍ + ∑ ܳܲ̇ + ᇱܪ ܪ−  

Butௗிర
ௗ௧

=  ∑ డிర
డೖ

̇ + ∑ డிర
డೖ

ܲ̇ + డிర
డೖ ܲ + డிర

డ௧
̇

  

A comparison of the above two equations gives the fourth set of transformation equations: 

ݍ =  − డிర
డೖ

,ܳ = డிర
డೖ

ᇱܪ, ܪ− = డிర
డ௧

     (31) 

examples of canonical transformations for a harmonic oscillator. 

7.2 EXAMPLES OF CANONICAL TRANSFORMATIONS FOR A HARMONIC 
 OSCILLATOR: 

7.2.1 Procedure for application of canonical transformations: 

We note that the relation between ܪ and ܪ′ in all the cases has the same from 

 i.e., ܪᇱ = ܪ + డி
డ௧

. Now, if F has no explicit time dependence, then డி
డ௧

= 0 and hence 

ᇱܪ      =  (32)    ܪ

Thus, when the generating function has no explicit time dependence, the new Hamiltonian ܪ′ 
is obtained from the old Hamiltonian H by substituting for  ,   in terms of the newݍ
variables ܲ,ܳ . Further we note that the ݐ has been treated as an invariant parameter of the 
motion and we have not made any provision for a transformation of the time coordinate along 
with the other coordinates.  

 If in the new set of coordinates ( ܲ,ܳ , all coordinates ܳ (ݐ  are cyclic, then 

   ܲ̇ = − డுᇱ
డொೖ

= 0 or ܲ=constant, say ߙ   (33) 

If the generating function ܨ does not depend on time ݐ explicitly and ܪ is a constant 
of motion, not depending on time, then from (32) ܪ′ is also constant of motion. Thus ܪ′ will 
not involve ܳ  and t (explicit time dependence). 

Therefore,  

,ݍ)ܪ ( = ,ᇱ(ܳܪ ܲ) = )ᇱܪ ܲ) = ,ଶߙ,ଵߙ)ᇱܪ .  (ߙ.

Hamilton’s equations for ܳ  are 
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ܳ̇ = డுᇱ
డೖ

= డுᇱ
డఈೖ

= ߱    (34) 

where ߱’s are functions of the ߙ’s only and are constant in time. 

Eq. (34) has the solution 

    ܳ =  ߱ ݐ  + ߚ     (35) 

where ߚ’s are the constants of integration, determined by the initial conditions. 

7.2.2 Conditions for Canonical Transformations: 

Suppose ܨ = then obviously డி (,ܳݍ)ܨ
డ௧

= 0 and ܪ =  .[from (21)] ′ܪ

Further from (21), we have 

ܲ = డி
డೖ

 and ܲ = − డி
డொೖ

 

Also   ݀ܨ = ∑ డி
డೖ

ݍ݀ + ∑ డி
డொೖ

݀ܳ  

or                            ݀ܨ = ∑  ݍ݀  − ∑ ܲ ݀ܳ     (36)   

The left hand side of eq. (36) is an exact differential, hence for a given transformation 
to be canonical, the right hand side of eq. (36) i.e.,∑  ݍ݀  −∑ ܲ݀ܳ  must be an exact 
differential. 

7.3 SUMMARY: 

Canonical transformations are a fundamental concept in classical mechanics, 
facilitating the transition between different Hamiltonian formulations. They preserve the form 
of Hamilton's equations, enabling simplified analysis of dynamical systems. For a 
transformation to be canonical, it must satisfy specific conditions, such as maintaining the 
simple structure of phase space and ensuring that the new coordinates and momenta are 
related through generating functions. These transformations are essential for solving complex 
problems and understanding the underlying symmetries in mechanical systems. This involves 
learning how to change a system's position and momentum coordinates while preserving its 
Hamiltonian structure. Generating functions (F1, F2, F3, F4) are key tools for defining these 
transformations. The aim is to simplify problem analysis and uncover system symmetries. 

This applies the concept to a practical example. The goal is to find transformations that 
simplify the harmonic oscillator's Hamiltonian, demonstrating how generating functions are 
used to derive these transformations and make the problem easier to solve. This reinforces the 
understanding of canonical transformations through a concrete application. 

7.4 TECHNICAL TERMS:  

 Canonical Transformations, Generating Functions. 
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7.5 SELF-ASSESSMENT QUESTIONS: 

1) Define canonical transformations and obtain the transformation equations 
corresponding to all possible generating functions 

2) Discuss the canonical transformations in detail and explain the condition for a 
transformation to be canonical 

3) What are canonical transformation equations? Discuss how transformation 
equations can be obtained from generating functions F1 and F2. 

4) What are canonical transformation equations? Obtain canonical transformation 
equations corresponding to first two types of generating functions. 

5) State the condition for canonical transformation and show that the transformation 
ݍ =  √2ܲ sinܳ  ݀݊ܽ  = √2ܲ cosܳ is canonical 

6) What are canonical transformations 

7) What is the condition for a transformation to be canonical 

8) Show that the transformation ܲ = ଵ
ଶ

(ܲଶ + ܳ ݀݊ܽ(ଶݍ = tanିଵ(


) is canonical 

9) Show that the transformation  Q = p and P =-q is canonical  

7.6 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2) Fundamentals of Classical Mechanics by  J.C. Upadhyaya. 

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 

 

 

Prof. Ch. Linga Raju 



LESSON-8 

POISSON’S BRACKET 

8.0 AIM AND OBJECTIVES: To learn about  

 Introduction to Poisson’s bracket notation 

 Equations of motion in Poisson bracket  

 The fundamentals and the angular momentum in poisson notation. 

 Jacobi identity 

To introduce and develop a comprehensive understanding of the Poisson bracket formalism 
as a powerful tool for describing and analyzing classical mechanics. Understand and apply 
Poisson's bracket notation: Define the Poisson bracket of two functions of canonical 
variables. Calculate Poisson brackets for given functions. Recognize and utilize the 
fundamental Poisson bracket relations. Derive and interpret equations of motion using 
Poisson brackets: Express Hamilton's equations of motion in Poisson bracket form. 
Understand how the time evolution of a dynamical variable is determined by its Poisson 
bracket with the Hamiltonian. Solve problems that involve finding the time evolution of 
variables. Express and analyze angular momentum using Poisson bracket notation: Represent 
the components of angular momentum in terms of canonical variables. Calculate the Poisson 
brackets between angular momentum components. Understand the implications of these 
Poisson bracket relations for the conservation and properties of angular momentum. State and 
apply the Jacobi identity: State the Jacobi identity for Poisson brackets. Verify the Jacobi 
identity for given functions. Understand the importance of the Jacobi identity in the 
consistency and structure of Hamiltonian mechanics. 

STRUCTURE: 

8.1  Introduction  

8.2  Poisson’s Bracket Introduction 

8.3 Equations of Motion in Poisson Bracket  

8.4  Fundamentals of Poisson Bracket Notation 

8.5  Angular Momentum and Poisson Brackets 

8.6 Jacobi Identity 

8.7 Summary 

8.8 Technical Terms 

8.9 Self-Assessment Questions 

8.10 Suggested Readings 



Centre for Distance Education                       8.2                        Acharya Nagarjuna University  

8.1  INTRODUCTION: 

This chapter delves into the concept of Poisson brackets, Equations of motion in Poisson 
bracket and fundamentals of Poisson bracket notation. Poisson brackets allow for 
systematically treating dynamical systems and their evolution in phase space. Key topics 
include the definition of Poisson brackets, their properties, the fundamental Poisson bracket 
and the Jacobi identity by Poisson notation. 

8.2  POISSON’S BRACKET INTRODUCTION: 

We know in the case of infinitesimal contact transformations, the changes in the conjugate 
variables   and ݍ are given by 

ݍߜ    = ߳ డீ
డೖ

 and ߜ = −߳ డீ
డೖ

    (1) 

Where ∈ is an infinitesimal parameter and the generating function ݍ)ܩ,  ) is arbitrary. Now
let us consider some function ݍ)ܨ, ߜ  andݍߜ ) with the changes  in the coordinates ݍ 
and   respectively can be expressed as  

ܨߜ    = ∑ ቀ డி
డೖ

ݍߜ + డி
డೖ

ቁߜ     (2) 

If the transformation (1), generated by the function G, is applied, we get   

ܨߜ   = ∑ ቂ డி
డೖ

ቀ߳ డீ
డೖ

ቁ+ డி
డೖ

ቀ−߳ డீ
డೖ

ቁቃ  

Since the parameter ߳ is independent of ݍ and  , we have  

ܨߜ = ߳ ቂ∑ ቀ డி
డೖ

డீ
డೖ

− డி
డೖ

డீ
డೖ

ቁ ቃ       (3)  

The quantity in the big bracket in (3) is called the Poisson bracket of two functions or 
dynamical variables ݍ)ܨ,  This definition of .[ܩ,ܨ] and is denoted by (,ݍ)ܩ ) and
Poisson bracket is true for ܨ and ܩ, being functions of time, Thus  

ܨߜ     =  (4)      [ܩ,ܨ]߳

8.3 POISSON’S BRACKETS: 

If the functions F and G are defined as  

∑ = ,[ܩ,ܨ]    ቀ డி
డೖ

డீ
డೖ

− డி
డೖ

డீ
డೖ

ቁ
ୀଵ     (5) 

For brevity, we may drop the subscripts ݍ,  The total .[ܩ,ܨ] and write the Poisson bracket as 
time derivative of the function ܨ can be written as  

   ௗி
ௗ௧

= డி
డ௧

+ ∑ ( డி
డೖ

ݍ̇ + డி
డೖ

)̇
ୀଵ     (6) 

Using, Hamilton’s equations ̇ݍ = డு
డೖ

 and − = డு
డೖ

, eq. (6) is obtained to be  
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ௗி
ௗ௧

= ܨ̇ = డி
డ௧

+ ∑ ቀ డி
డೖ

డு
డೖ

− డி
డೖ

డு
డೖ

ቁ
ୀଵ       (7) 

In view of the definition of Poisson’s bracket given by eq. (5), We obtain 

ௗி
ௗ௧

= డி
డ௧

+  (8)         [ܪ,ܨ]

From this equation we see that the function F is a constant of motion, if  

    ௗி
ௗ௧

= డி ݎ 0
డ௧

+ [ܪ,ܨ] = 0    (9) 

Now, if the function ܨ does not depend on time explicitly, డி
డ௧

= 0 and then the condition for 

  to be constant of motion is obtained to be ܨ

[ܪ,ܨ] = 0          (10) 

Thus if a function F does not depend on time explicitly and is a constant of motion, its 
Poisson bracket with the Hamiltonian vanishes. In other words, a function whose Poisson 
bracket with Hamiltonian vanishes is a constant of motion of motion. This result does not 
depend whether H itself is constant of motion.  

Equations of motion in Poisson bracket form: Special cases of (8) are 

ܨ (1) = ݍ̇ݍ =  (8a)        [ܪ,ݍ]

ܨ (2) =  , ̇ =  (8b)        [ܪ,]

ܨ (3) = ,ܪ ܪ̇ = డு
డ௧

         (8c) 

These equations (8a, 8b, 8c) are identical to Hamilton’s equations and referred as equations 
of motion in Poisson bracket form. 

Properties of Poisson brackets and Fundamental Poisson brackets: The Poisson bracket 
has the property of antisymmetric, given by  

[ܩ,ܨ]    =  (11)      [ܨ,ܩ]−

Because [ܩ,ܨ] = ∑ [ డி
డೖ

డீ
డೖ

− డி
డೖ

డீ
డೖ

] = −∑ ቂ డீ
డೖ

డி
డೖ

− డீ
డೖ

డி
డೖ

ቃ = [ܨ,ܩ]−  (11a) 

Thus Poisson bracket does not obey the commutative law of algebra. As an application of the 
Poisson brackets, we are giving below some of the special cases: 

 (1) When ܩ =  ,ଵݍ

,ܨ] [ଵݍ = 
ܨ߲
ݍ߲

ଵݍ߲
߲

−
ܨ߲
߲

ଵݍ߲
ݍ߲

൨ = −
ܨ߲
߲

ߜ


 

Or [ܨ, [ଵݍ = − డி
డ

         (12) 

Also if ܨ = ,ݍ ,ݍ] [ݍ = − డೖ
డ

= 0       (13) 
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And if ܨ =  , ] [ݍ, = − డೖ
డ

=        (14)ߜ−

(2) When ܩ = [,ܨ] = ∑ డி
డೖ

ߜ  

Or  [ܨ, [ = డி
డ

        (15) 

For ܨ = , ,] [ = డೖ
డ

= 0       (16) 

And for ܨ = ݍ , ,ݍ] [ = డೖ
డ

=         (17)ߜ

The above results can be summarized as follows:    

,ݍ]   [ݍ = ,] [ = 0      (18) 

and        [ݍ, [ =          (19)ߜ

where ߜ is the kronecker delta symbol with the property 

ߜ = 0 for ݇ ≠ 1 and ߜ = 1 for ݇ = ݈ 

Equations (18) and (19) are called the fundamental Poisson’s brackets. 

Further from the definition of Poisson bracket of any two dynamical variables or functions, 
one can obtain the following identities: 

[ܨ,ܨ](݅) = 0          (20) 

[ܥ,ܨ](݅݅) = 0,  C=constant            (21) 

[ܩ,ܨܥ](݅݅݅) =   (22)        [ܩ,ܨ]ܥ

ଵܨ](ݒ݅) + [ܩ,ଶܨ = [ܩ,ଵܨ] +  (23)       [ܩ,ଶܨ]

[ଶܩଵܩ,ܨ](ݒ) = [ଶܩ,ܨ]ଵܩ +  ଶ]      (24)ܩ[ଵܩ,ܨ]

(݅ݒ) డ
డ௧

[ܩ,ܨ] = ቂడி
డ௧

ቃܩ, + ቂܨ, డீ
డ௧
ቃ       (25) 

,ܨൣ(݅݅ݒ) +൧[ܭ,ܩ] ,ܩൣ +൧[ܨ,ܭ] ,ܭൣ ൧[ܩ,ܨ] = 0 (Jacobi’s identity)    (26) 

8.4 FUNDAMENTALS OF POISSON BRACKET NOTATION: 

The Poisson bracket has the property of antisymmetry, given by  

[ܩ,ܨ]    =  (27)      [ܨ,ܩ]−

Because [ܩ,ܨ] = ∑ [ డி
డೖ

డீ
డೖ

− డி
డೖ

డீ
డೖ

] = −∑ ቂ డீ
డೖ

డி
డೖ

− డீ
డೖ

డி
డೖ

ቃ = [ܨ,ܩ]−  (28) 

Thus Poisson bracket does not obey the commutative law of algebra. As an application of the 

Poisson brackets, we are giving below some of the special cases: 



Classical Mechanics                                      8.5                                             Poisson’s Bracket 

 (1) When ܩ =  ,ଵݍ

,ܨ] [ଵݍ = 
ܨ߲
ݍ߲

ଵݍ߲
߲

−
ܨ߲
߲

ଵݍ߲
ݍ߲

൨ = −
ܨ߲
߲

ߜ


 

Or [ܨ, [ଵݍ = − డி
డ

       (29) 

Also if ܨ = ,ݍ ,ݍ] [ݍ = − డೖ
డ

= 0     (30) 

And if ܨ =  , ] [ݍ, = − డೖ
డ

=      (31)ߜ−

(2) When ܩ = [,ܨ] = ∑ డி
డೖ

ߜ  

Or  [ܨ, [ = డி
డ

       (32) 

For ܨ = , ,] [ = డೖ
డ

= 0      (33) 

And for ܨ = ݍ , ,ݍ] [ = డೖ
డ

=        (34)ߜ

The above results can be summarized as follows:    

,ݍ]   [ݍ = ,] [ = 0     (35) 

and        [ݍ, [ =         (36)ߜ

where ߜ is the kronecker delta symbol with the property 

ߜ = 0 for ݇ ≠ 1 and ߜ = 1 for ݇ = ݈ 

Equations (35) and (36) are called the fundamental Poisson’s brackets. 

Further from the definition of Poisson bracket of any two dynamical variables or 
functions, one can obtain the following identities: 

[ܨ,ܨ](݅) = 0         (37) 

[ܥ,ܨ](݅݅) = 0,  C=constant           (38) 

[ܩ,ܨܥ](݅݅݅) =   (39)       [ܩ,ܨ]ܥ

ଵܨ](ݒ݅) + [ܩ,ଶܨ = [ܩ,ଵܨ] +  (40)      [ܩ,ଶܨ]

[ଶܩଵܩ,ܨ](ݒ) = [ଶܩ,ܨ]ଵܩ +  ଶ]     (41)ܩ[ଵܩ,ܨ]

(݅ݒ) డ
డ௧

[ܩ,ܨ] = ቂడி
డ௧

ቃܩ, + ቂܨ, డீ
డ௧
ቃ      (42) 

,ܨൣ(݅݅ݒ) +൧[ܭ,ܩ] ,ܩൣ +൧[ܨ,ܭ] ,ܭൣ ൧[ܩ,ܨ] = 0 (Jacobi’s identity)   (43) 
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8.5 ANGULAR MOMENTUM AND POISSON BRACKETS: 

Using the definition of linear and angular momentum, a number of interesting and 
useful Poisson bracket relations can be obtained. 

Poisson brackets relations between the components of p and J: According to the 
definition of angular momentum,  

= ܬ  ݔ ݎ  = ൫ݔଓ̂ + ଔ̂ݕ + ݖ ݇൯)ݔ௫ଓ̂+ ௬ଔ̂ + ௭ ݇) 

Or ܬ = ൫ݕ௭ − ௬൯ଓ̂ݖ + ௫ݖ) − ௭)ଔ̂ݔ + ௬ݔ) − (௫ݕ ݇ 

Therefore, ܬ௫ = ௭ݕ) − ௬ܬ ,(௬ݖ = ௫ݖ) − ௭ܬ ௭) andݔ = ௬ݔ) −  (௫ݕ

From the definition of Poisson bracket (31) 

[ܩ,ܨ]    = ∑ ቀ డி
డೖ

డீ
డೖ

− డி
డೖ

డீ
డೖ

ቁ
ୀଵ  

We have, 

௫ൣ ௬൧, = ௬ൣ ௭൧, = ௭] [௫, = ௫] [௫, = 0  (44) 

ܰ Next, using the result [,ܨ] = డி
డభ

, we have 

௫ܬൣ     ௬൧, = ௭ , ௫ܬ] [௭, = ௬− , ௫ܬ] [௫, = 0  (45 a) 

Similarly,   ൣܬ௬, ௫൧ = ௭− , ௬ܬൣ ௬൧, = 0, [௭,௬ܬ] =  ௫]  (45 b)

௭ܬ]     [௫, = ௬ , ௭ܬൣ ௬൧, = ௫− , ௭ܬ] [௭, = 0  (45 c) 

Further  

௫ܬൣ     , ௬൧ܬ = ∑ ቂడೣ
డೖ

డ
డೖ

− డೣ
డೖ

డ
డೖ

ቃ  

For ݍଵ = ଶݍ,ݔ = ଷݍ,ݕ = ଵ ݀݊ܽ ݖ = ௫ ଶ, = ௬ ଷ, = ௭ , 

௫ܬൣ , ௬൧ܬ =
௫ܬ߲
ݔ߲

௬ܬ߲
௫߲

−
௫ܬ߲
௫߲

௬ܬ߲
ݔ߲ +

௫ܬ߲
ݕ߲

௬ܬ߲
௬߲

−
௫ܬ߲
௬߲

௬ܬ߲
ݔ߲ +

௫ܬ߲
ݖ߲

௬ܬ߲
௭߲

−
௫ܬ߲
௭߲

௬ܬ߲
ݖ߲  

= 0 − 0 + 0 − 0 + ൫−௬൯(−ݔ)−  (௫)(ݕ)

 = ௬ݔ − ௫ =  ௭        (46)ܬ

Similarly one can prove that 

,௬ܬൣ     ௭൧ܬ = ௫ܬ , ௭ܬ] , [௫ܬ =  ௬    (47)ܬ

8.6 JACOBI IDENTITY: 

If we make a canonical transformation from the old set of variables (ݍ,  )to a new

set of variables (ܳ, ܲ), then the new equations of motion are,  
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ܲ̇ = − డுᇱ
డொೖ

 and ܳ̇ = డுᇱ
డೖ

    (48) 

Now, if we require that the transformed Hamiltonian ܪ’ is identically zero i.e., ܪᇱ = 0, then 
equations of motion (1) assume the from, 

ܲ̇ = 0 and ܳ̇ = 0 

ܲ = and ܳ ݐ݊ܽݐݏܽ݊ܿ =  (49)      ݐ݊ܽݐݏ݊ܿ

Thus the new coordinates and momenta are constants in time and they are cyclic. 

Thus new Hamiltonian ܪ’ is related to the old Hamiltonian ܪ by the relation 

ᇱܪ = ܪ +
ܨ߲
ݐ߲  

Which will be zero only when F satisfies the relation 

,ݍ)ܪ     , (ݐ + డி
డ௧

= 0      (50) 

Where ݍ)ܪ, , ,ଶݍ,ଵݍ)ܪ is written for (ݐ ݍ… , ,ଵ ,ଶ …  ,  .(ݐ

For convenience, We take the generating function F as a function of the old coordinates ݍ , 
the new constant momenta ܲ and time ݐ i.e., ܨଶ(ݍ, ܲ,  Then .(ݐ

     = డிమ
డೖ

      (51) 

Therefore,  ܪ ቀݍ, డிమ
డೖ

, +ቁݐ డிమ
డ௧

= 0     (52) 

Let us see what is the physical meaning of the generating function ܨଶ(ݍ, ܲ,  The total .(ݐ
time derivative of ܨଶ is 

ଶܨ߲
ݐ߲ = 

ଶܨ߲
ݍ߲

ݍ̇ + ܲ̇



ୀଵ

+
ଶܨ߲
ݐ߲



ୀଵ

 

Here, ܲ̇ = 0, డிమ
డ௧

= from (31) and డிమ ܪ−
డೖ

=   from (30). 

Therefore,   డிమ
డ௧

= ∑ ݍ̇ ܪ− = ܮ
ୀଵ  

or       ܨଶ = ݐ݀ ܮ∫ = ܵ    (53) 

where S is the familiar action of the system, known as the Hamilton’s principal function in 

relation to the variational principle. Writing ܨଶ = ܵ in eq. (52), we get 

ܪ      ቀݍ, డௌ
డೖ

, +ቁݐ డௌ
డ௧

= 0   (54) 

This is known as Hamilton-Jacobi equation which is a partial differential equation of first 
order in (݊ + 1) variables ݍଵ,ݍଶ, … , ݍ ,  .ݐ
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Let the complete solution of equation eq. (54) be of the form 

   ܵ = ,ଵݍ) ܵ ,ଶݍ … . , ݍ ,ଶߙ,ଵߙ, ߙ… ,   (55)   .(ݐ

where ߙଵ,ߙଶ, … .   are ݊ independent constants of integration. Here, we have omitted oneߙ,
arbitrary additive constant which has no importance in a generating function because only 
partial derivatives of the generating function appear in the transformation equations. 

 In eq. (55), the solution ܵ is a function ݊ coordinates ݍ, time ݐ and ݊ independent 
constants. We can take these n constants of integration as the new constant momenta i.e., 

ܲ = ߙ      (56) 

Now, the n transformation equations 

 = డௌ (భ,….,,ఈభ,…,ఈ ,௧)
డೖ

    (57) 

These are n equations, which ݐ = ߙ  (initially) give the n values ofݐ  in terms of the 
initial values of ݍ and  . The other ݊ transformation equations are   

ܳ = డௌ
డೖ

=constant, say ߚ  

or     ߚ = డௌ (భ,…., ,ఈభ ,….,ఈ ,௧)
డఈೖ

   (58) 

Similarly one can calculate the constants ߚ  by using initial conditions i.e., at ݐ =  , theݐ
known initial values of ݍ, in eq. (58). Thus ߙandߚ  constants are known and eq. (58) will 
give ݍ in terms of ߙ,ߚ  and ݐ i.e., 

ݍ = ,ଶߙ,ଵߙ)ݍ … . ߙ, ,ଶߚ,ଵߚ, … . ߚ, ,  (59)   (ݐ

After performing the differentiation in eq. (58), eq. (59) may be substituted for ݍ to obtain 
momenta    will be obtained as functions of constants ߙ,ߚ  and time ݐ i.e.,   

 = ,ଶߙ,ଵߙ) ߙ… ,ଶߚ,ଵߚ, ߚ… ,  (60)   (ݐ

In this way we obtain the desired complete solution of the mechanical problem. 

Thus we see that the Hamilton’s principal function S is the generator of a canonical 
transformation to constant coordinates (ߚ) and momenta (ߙ). Also in solving the Hamilton-
Jacobi equation, we obtain simultaneously a solution to the mechanical problem. 

8.7 SUMMARY: 

This lesson explores the Poisson bracket formalism, a powerful tool in classical mechanics 
that provides an alternative way to express and analyze the equations of motion. Introduction 
to Poisson's Bracket Notation: This notation offers a compact and elegant way to express 
relationships between dynamical variables. Equations of Motion in Poisson Bracket: This 
illustrates the central role of the Hamiltonian in determining the system's dynamics. 
Fundamentals and Angular Momentum in Poisson Notation: Angular momentum components 
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(Lx, Ly, Lz) can be expressed and manipulated using Poisson brackets, revealing their 
relationships and conservation properties. Jacobi Identity: The Jacobi identity is a 
fundamental property of Poisson brackets. This identity ensures consistency and plays a 
crucial role in the mathematical structure of classical mechanics, particularly in the context of 
canonical transformations and symmetries. The Jacobi identity is essential for proving that 
Poisson brackets are invariant under canonical transformations. 

8.8 TECHNICAL TERMS: 

 Poisson’s bracket notation, Equations of motion in Poisson bracket, angular 
 momentum in Poisson notation and Jacobi identity. 

8.9 SELF-ASSESSMENT QUESTIONS: 

1) Write briefly a note on Poisson’s bracket notation. 

2) What are equations of motion in Poisson bracket? 

3) Explain the fundamentals and the angular momentum in Poisson notation. 

4) Write Jacobi identity.  

8.10 SUGGESTED READINGS:  

1) Classical Mechanics: H. Goldstein.  

2) Mechanics: Simon.  

3) Mechanics: Gupta, Kumar and Sharma.  

 

Prof. Ch. Linga Raju 



LESSON-9 

HAMILTON-JACOBI METHOD 

9.0 AIM AND OBJECTIVES:  

To learn about 

 Introduction  

 Hamilton-Jacobi Equation of Hamilton's principal function 

 Harmonic oscillator problem as an example of Hamilton-Jacobi method 

To introduce students to the Hamilton-Jacobi formulation of classical mechanics and 
demonstrate its application in solving dynamical problems. Explain the motivation for the 
Hamilton-Jacobi formulation as an alternative to Lagrangian and Hamiltonian mechanics. 
Recognize the connection between the Hamilton-Jacobi equation and the concept of a 
generating function in canonical transformations. Derive and state the Hamilton-Jacobi 
equation using Hamilton's principal function (S). Define Hamilton's principal function and its 
relationship to the classical action. Explain the role of the principle of least action in the 
derivation of the Hamilton-Jacobi equation. Identify the physical meaning of the partial 
derivatives of Hamilton's principal function. Apply the Hamilton-Jacobi method to solve the 
one-dimensional harmonic oscillator problem.  Determine Hamilton's principal function for 
the harmonic oscillator. Extract the time-dependent position and momentum of the oscillator 
from the solution of the Hamilton-Jacobi equation. Compare the Hamilton-Jacobi solution 
with the solution obtained using other methods (e.g., direct solution of Newton's equations or 
Hamiltonian mechanics). Appreciate the elegance and power of the Hamilton-Jacobi method 
in solving certain dynamical problems. 

STRUCTURE: 

9.1 Introduction  

9.2 Hamilton-Jacobi Equation of Hamilton's Principal Function 

9.3 Harmonic Oscillator Problem as an example of Hamilton-Jacobi Method 

9.4 Summary 

9.5 Technical Terms 

9.6 Self-Assessment Questions 

9.7 Suggested Readings 
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9.1 INTRODUCTION: 

The Hamilton-Jacobi equation is a fundamental concept in classical mechanics that 
reformulates Newtonian mechanics into a more analytical framework. This chapter explores 
the Hamilton-Jacobi method, emphasizing its application to the harmonic oscillator problem. 
The method simplifies the process of solving complex dynamical systems by transforming 
them into a single first-order partial differential equation. By employing this technique, we 
gain deeper insights into the behavior of systems governed by conservative forces, leading to 
a clearer understanding of action and phase space. The harmonic oscillator serves as an 
exemplary case, showcasing the elegance and utility of the Hamilton-Jacobi approach. 

9.2 HAMILTON-JACOBI EQUATION OF HAMILTON'S PRINCIPAL 

 FUNCTION: 

If we make a canonical transformation from the old set of variables (ݍ,  )to anew

set of variables (ܳ, ܲ), then the new equations of motion are,  

ܲ̇ = − డுᇱ
డொೖ

 and ܳ̇ = డுᇱ
డೖ

    (1) 

Now, if we require that the transformed Hamiltonian ܪ’ is identically zero i.e., ܪᇱ = 0, then 

equations of motion (1) assume the from, 

ܲ̇ = 0 and ܳ̇ = 0 

ܲ = and ܳ ݐ݊ܽݐݏܽ݊ܿ =  (2)      ݐ݊ܽݐݏ݊ܿ

Thus the new coordinates and momenta are constants in time and they are cyclic. 

Thus new Hamiltonian ܪ’ is related to the old Hamiltonian ܪ by the relation 

ᇱܪ = ܪ +
ܨ߲
ݐ߲  

Which will be zero only when F satisfies the relation 

,ݍ)ܪ     , (ݐ + డி
డ௧

= 0      (3) 

Where ݍ)ܪ, , ,ଶݍ,ଵݍ)ܪ is written for (ݐ ݍ… , ,ଵ ,ଶ …  ,  .(ݐ

For convenience, We take the generating function F as a function of the old coordinates ݍ , 
the new constant momenta ܲ and time ݐ i.e., ܨଶ(ݍ, ܲ,  Then .(ݐ

     = డிమ
డೖ

      (4) 
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Therefore,  ܪ ቀݍ, డிమ
డೖ

, +ቁݐ డிమ
డ௧

= 0     (5) 

Let us see what is the physical meaning of the generating function ܨଶ(ݍ, ܲ,  The total .(ݐ
time derivative of ܨଶ is 

ଶܨ߲
ݐ߲ = 

ଶܨ߲
ݍ߲

ݍ̇ + ܲ̇



ୀଵ

+
ଶܨ߲
ݐ߲



ୀଵ

 

Here, ܲ̇ = 0, డிమ
డ௧

= from (5) and డிమ ܪ−
డೖ

=   from (4). 

Therefore,   డிమ
డ௧

= ∑ ݍ̇ ܪ− = ܮ
ୀଵ  

or       ܨଶ = ݐ݀ ܮ∫ = ܵ    (6) 

Where S is the familiar action of the system, known as the Hamilton’s principal function in 
relation to the variational principle. Writing ܨଶ = ܵ in eq. (5), we get 

ܪ      ቀݍ, డௌ
డೖ

, +ቁݐ డௌ
డ௧

= 0   (7) 

This is known as Hamilton-Jacobi equation which is a partial differential equation of first 
order in (݊ + 1) variables ݍଵ,ݍଶ, … , ݍ ,  .ݐ

Let the complete solution of equation eq. (7) be of the form 

   ܵ = ,ଵݍ) ܵ ,ଶݍ … . , ݍ ,ଶߙ,ଵߙ, ߙ… ,   (8)   .(ݐ

where ߙଵ,ߙଶ, … .   are ݊ independent constants of integration. Here, we have omitted oneߙ,

arbitrary additive constant which has no importance in a generating function because only 

partial derivatives of the generating function appear in the transformation equations. 

 In eq. (8), the solution ܵ is a function ݊ coordinates ݍ, time ݐ and ݊ independent 

constants. We can take these n constants of integration as the new constant momenta i.e., 

ܲ = ߙ      (9) 

Now, the n transformation equations 

 = డௌ (భ,….,,ఈభ,…,ఈ ,௧)
డೖ

    (10) 

These are n equations, which ݐ = ߙ  (initially) give the n values ofݐ  in terms of the 

initial values of ݍ and  . The other ݊ transformation equations are   

ܳ = డௌ
డೖ

=constant, say ߚ  
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or     ߚ = డௌ (భ,…., ,ఈభ ,….,ఈ ,௧)
డఈೖ

   (11 ) 

Similarly one can calculate the constants ߚ  by using initial conditions i.e., at ݐ =  , theݐ
known initial values of ݍ, in eq. (11). Thus ߙandߚ  constants are known and eq. (11) will 
give ݍ in terms of ߙ,ߚ  and ݐ i.e., 

ݍ = ,ଶߙ,ଵߙ)ݍ … . ߙ, ,ଶߚ,ଵߚ, … . ߚ, ,  (12)   (ݐ

After performing the differentiation in eq. (11), eq. (12) may be substituted for ݍ to obtain 

momenta    will be obtained as functions of constants ߙ,ߚ  and time ݐ i.e.,  

 = ,ଶߙ,ଵߙ) ߙ… ,ଶߚ,ଵߚ, ߚ… ,  (13)   (ݐ

In this way we obtain the desired complete solution of the mechanical problem. 

Thus we see that the Hamilton’s principal function S is the generator of a canonical 
transformation to constant coordinates (ߚ) and momenta (ߙ). Also in solving the Hamilton-
Jacobi equation, we obtain simultaneously a solution to the mechanical problem. 

9.3  HARMONIC OSCILLATOR PROBLEM AS AN EXAMPLE OF HAMILTON-
 JACOBI METHOD: 

 Let us consider a one-dimensional harmonic oscillator. The force acting on the 
oscillator at a displacement ݍ is 

ܨ =  ݍ݇−

Where k is force constant. 

Potential energy, ܸ = ∫ ݍ݀ ݍ݇ = ଵ
ଶ
ଶݍ݇

  

Kinetic energy, ܶ = ଵ
ଶ
ଶݒ݉ = మ

ଶ
 

Hamiltonian, ܪ = ܶ + ܸ (conservative system) 

or ܪ = మ

ଶ
+ ଵ

ଶ
 ଶݍ݇

But  = డௌ
డ

, therefore 

ܪ = ଵ
ଶ
ቂడௌ
డ
ቃ
ଶ

+ ଵ
ଶ
 ଶ    (14)ݍ݇

Hence the Hamilton-Jacobi equation corresponding to this Hamiltonian is  

ଵ
ଶ

ቂడௌ
డ
ቃ
ଶ

+ ଵ
ଶ
ଶݍ݇ + డௌ

డ௧
= 0   (15) 
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As the explicit dependence of ܵ on ݐ is involved only in the last term of left hand side of eq. 
(15), a solution to this equation can be assumed in the form 

    ܵ = ଵܵ(ݍ) + ܵଶ(ݐ)     (16) 

Thus    ଵ
ଶ

ቂడௌభ
డ
ቃ
ଶ

+ ଵ
ଶ
ଶݍ݇ = − డௌమ

డ௧
    (17) 

Setting each side of eq. (17) equal to a constant, say ߙ, we get 

   ଵ
ଶ

ቂడௌభ
డ
ቃ
ଶ

+ ଵ
ଶ
ଶݍ݇ = – and ,ߙ డௌమ

డ௧
=  ߙ

So that డௌభ
డ

= ට2݉ (ߙ − ଵ
ଶ
– ଶ) andݍ݇ డௌమ

డ௧
=  ߙ

Integrating, we get 

ଵܵ = ∫ට2݉ቀߙ − ଵ
ଶ
ଶቁݍ݇ ݍ݀ + ଵandܵଶܥ = ݐߙ +  ଶܥ

Therefore, ܵ = ∫ට2݉ቀߙ − ଵ
ଶ
ଶቁݍ݇ ݍ݀ − ݐߙ +  ܥ

where ܥ = ଵܥ) +  ଶ) the constant of integration. It is to be noted that C an additive constantܥ
and will not affect the transformation, because to obtain the new position coordinate        

ቀܳ = డௌ
డ

ߚ ݎ  = డௌ
డఈ
ቁonly partialderivative of ܵ with respect to ߙ(= ܲ,  new momentum) is 

required. This is why this additive constant ܥ has no effect on transformation and is dropped. 
Thus 

   ܵ = ∫ට2݉ቀߙ − ଵ
ଶ
ଶቁݍ݇ ݍ݀ −  (18)    ݐߙ

We designate the constant ߙ as the new momentum P. The new constant coordinate (ܳ =  (ߚ
is obtained by the transformation 

ߚ =
߲ܵ
ߙ߲ =

√2݉
2

න
ݍ݀

ටߙ − ଵ
ଶ
ଶݍ݇

− ݐ = ට
݉
ߙ2

න
ݍ݀

ට1− మ

ଶఈ

−  ݐ

or    ߚ = ට


sinିଵ ݍ ට 
ଶఈ
−  ݐ

Therefore, ට


sinିଵ ටݍ 
ଶఈ

= ݐ + or sinିଵ ߚ ݍ ට 
ଶఈ

= ට 


ݐ) +  (ߚ

Writing ߱ = ඥ݇/݉, we obtain 
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ݍ     = ට ଶఈ
ఠమ ݐ)߱ ݊݅ݏ  +  (19)     (ߚ

Which is the familiar solution of the harmonic oscillator. 

9.4 SUMMARY:  

 This lesson explores the Hamilton-Jacobi equation, a powerful tool in classical 
mechanics, providing an alternative approach to solving problems compared to 
Newtonian or Lagrangian/Hamiltonian mechanics. 

 Introduction: 

o The lesson begins by introducing the concept of the Hamilton-Jacobi equation. 

o It likely highlights the equation's significance in transforming a mechanics 
problem into a partial differential equation. 

o It may also touch upon the connection between classical and quantum 
mechanics, as the Hamilton-Jacobi equation provides a bridge to the 
Schrödinger equation. 

 Hamilton-Jacobi Equation of Hamilton's Principal Function: 

o This section delves into the derivation and form of the Hamilton-Jacobi 
equation. 

o It focuses on Hamilton's principal function, denoted as S(q,t), which depends 
on the generalized coordinates (q) and time (t). 

o The Hamilton-Jacobi equation is a first-order partial differential equation 

 The lesson likely explains how solving this equation yields the principal function S, 
from which the system's motion can be determined.  

 It should explain how the partial derivatives of S relate to the momentum. This 
section demonstrates the application of the Hamilton-Jacobi method using the familiar 
harmonic oscillator problem. It showcases how to set up the Hamilton-Jacobi equation 
for the harmonic oscillator. It then guides through the process of solving the partial 
differential equation to find Hamilton's principal function. Finally, it will demonstrate 
how the principal function is used to find the equations of motion for the harmonic 
oscillator. This example highlights the systematic approach of the Hamilton-Jacobi 
method and its effectiveness in solving classical mechanics problems. 
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9.5 TECHNICAL TERMS: 

 Hamilton-Jacobi Equation, Hamilton's principal function, Harmonic oscillator 

 problem. 

9.6 SELF-ASSESSMENT QUESTIONS:  

1) State and prove Hamilton-Jacobi Equation of Hamilton's principal function. 

2) Show Harmonic oscillator problem as an example of Hamilton-Jacobi method. 

9.7 SUGGESTED READINGS:  

1) Classical Mechanics: H. Goldstein  

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma  

 

Dr. S. Balamurali Krishna 

 



LESSON-10 

HAMILTON-JACOBI EQUATION  

10.0 OBJECTIVES: 

To learn about  

 Hamilton-Jacobi equation for Hamilton's characteristic function 

 Action angle variables 

To introduce and explain the Hamilton-Jacobi equation as a powerful tool for solving 
classical mechanics problems, and to develop an understanding of action-angle variables as a 
method for simplifying the description of integrable systems.Upon completion of this lesson, 
students should be able to:Derive and understand the Hamilton-Jacobi equation for 
Hamilton's characteristic function.Apply the Hamilton-Jacobi equation to solve simple 
mechanical systems.Define and explain action-angle variables. Understand the significance 
of action-angle variables in simplifying the analysis of periodic motion. Calculate action-
angle variables for specific examples, such as the harmonic oscillator.Recognize the 
connection between the Hamilton-Jacobi theory and the concept of integrability. 

STRUCTURE: 

10.1 Hamilton-Jacobi Equation for Hamilton's Characteristic Function 

10.2 Action Angle Variables 

10.3 Summary 

10.4 Technical Terms 

10.5 Self-Assessment Questions 

10.6 Suggested Readings 

10.1 HAMILTON-JACOBI EQUATION FOR HAMILTON'S CHARACTERISTIC 

 FUNCTION: 

We were able to obtain the solution of the Hamilton-Jacobi equation, because ܵ could 
be separated into two parts: ଵܵ(ݍ)andܵଶ(ݐ), where ଵܵ(ݍ) involves the variable ݍ only ܵଶ(ݐ) 
the variable t only. In this case, the Hamiltonian H was not involving time explicitly. 
However, such a separation of variables is always possible, if the Hamiltonian ܪ does not 
involve time ݐ explicitly. This method is often called the method of separation of variables. 
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If the Hamiltonian H is not an explicit function of time t, then the Hamiltonian-Jacobi 

equation for S is obtained to be  

ܪ ቂݍ , డௌ
డೖ

ቃ + డௌ
డ௧

= 0     (1) 

Since the first term involves the dependence of ܵ on ݍ and the second term on t, we can 
assume the solution S in the form  

ݍ)ܵ ߙ, , (ݐ = ܹ(ܳ,ߙ) −   (2)   ݐଵߙ

Therefore,    డௌ
డೖ

= డௐ
డೖ

 and డௌ
డ௧

=  ଵߙ−

And hence the Hamilton-Jacobi equation assumes the form 

ܪ ݍ,
߲ܹ
ݍ߲

൨ =  ଵߙ

or  ܪ ቀݍଵ, ,ଶݍ … ,ݍ
డௐ
డభ

, డௐ
డమ

, … , డௐ
డ

ቁ =  ଵ   (3)ߙ

This is the time-independent Hamilton-Jacobi equation. The constnat of integration ߙଵ 
is thus equal to the constant value of ܪ. For conservative system, ܪ = ଵߙ =  where E ,ܧ
represents the total energy of the system. Thus for conservative system, Hamiltonian-Jacobi 
equation is wtitten as 

ܪ ቂݍ , డௐ
డೖ

ቃ =  (4)     ܧ

The eq.(3) can also be obtained directly by taking ܹ as the generating function ܹ(ݍ, ܲ) 
independent of time. The equations of transformations are 

 =  and ܳݍ߲/ܹ߲ = ߲ܹ/߲ ܲ    (5) 

Now if the new momenta ܲ are all constants of motion ߙ , where ߙଵ in particular is the 
constant of motion ܪ, then ܳ =  . The condition to determine ܹ is thatߙ߲/ܹ߲

,ݍ)ܪ ( =  ଵߙ

   Using   = డௐ
డೖ

, we obtain 

ܪ ݍ,
߲ܹ
ݍ߲

൨ =  ଵߙ

Which is identical to eq. (3) 

Also   ܪᇱ = ܪ + డௐ
డ௧
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But ܹ(ݍ, ܲ) does not involve time and hence  

ᇱܪ = ܪ = =) ଵߙ  for conservative system)    (6) ܧ

The function W is known as Hamilton’s characterstic function. It generates a canonical 
transformation where all the new coordinates ܳ  are cyclic because ܪᇱ =  ଵ, depending onlyߙ
on one of the new momenta ଵܲ = ଵ and does not contain any ܳߙ . Now the canonical 
equations for new variables are  

ܲ̇ = − డுᇲ

డொೖ
= 0 or ܲ = ߙ , constant    (7) 

andܳ̇ = డுᇲ

డఈೖ
= 1 for ݇ = 1 and ܳ̇ = 0 for ݇ ≠ 1. 

Hence the solutions are  

ܳଵ = ݐ + ଵߚ = ݇ ଵ forߙ߲/ܹ߲ = 1    (7a)  

and     ܳ = ߚ = ݇  forߙ߲/ܹ߲ ≠ 1    (7b) 

Thus out of all the new coordinates ܳ ,ܳଵ is the only coordinate which is not a 
constant of motion. Here we observe the conjugate relationship between the time as the new 
coordinate and Hamiltonian (energy) as the conjugate momentum. 

The Hamilton-Jacobi equationdetermines the dependence of the Hamilton’s 
characterstic functon ܹ on the old coordinates ݍ. A complete solution of this equation will 
have n constants of ntegration and as explained earlier and in the discussion of harmonic 
oscillator problem, one of them is just an additive constant.  

Rest of the ݊ − 1 independent constants ߙଵ,ߙଷ, …  ଵ may then as new constantߙ  plusߙ,
momenta. First half of the equations (29), when evaluated with the initial condition ݐ = 0, 
relates the ݊ constant ߙ  to the initial values of ݍ and  . Physical significance of the 
Hamilton’s characterstic fnctin W: The function W has physical significance similar to the 
Hamilton’s principal function S. Since ܹ(ݍ, ܲ)does not involve time ݐ explicitly, its total 
time derivative is 

ܹ݀
ݐ݀ = 

߲ܹ
ݍ߲

ݍ̇



ୀଵ

+ 
߲ܹ
߲ ܲ

̇ܲ



ୀଵ

 

Since ߙ, constants, ܲ̇ = 0 and therefore 

ܹ݀
ݐ݀ = ̇ݍ



ୀଵ

 

or   ܹ = ∫∑ ݐ݀ݍ̇ = ∫∑ ݍ݀     (8) 
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*Sometimes it is useful to have a set of n indeoendent functions of ߙ  as the transformed 

momenta i.e., 

 = ,ଶߙ,ଵߙ)ߛ …  (ߙ,

Now, ܹ = ,ݍ)ܹ  will, in general, depend on morethan one ′ܪ or ܪ ) and the Hamiltonianߛ

of the ߛ’s. The equations of motion for ܳ  are   

ܳ =
ᇱܪ߲

ߛ߲
= ݂  

where ݂′ s are the functions of ߛ . 

Therefore,  ܳ = ݂ݐ + ߚ  

Thus now all the new coordinates are linear functions of time. 

which is the abbreviated action,  

and ܵ = ∫ ݐ݀ ܮ = ∫∑ ݍ̇] − ݐ݀[ܪ = ܹ ݐ݀ ܪ∫−  

When H does not involve time t explicitly ∫ݐ݀ ܪ =  so that .ݐଵߙ

ܵ = ܹ− ,ݍ)ܵ or ݐଵߙ ܲ, (ݐ = ,ݍ)ܹ ܲ) −  ݐଵߙ

or   ܵ(ݍ , (ݐ = (ݍ)ܹ −  (9)     ݐܧ

     where ܲ = ߙ  are constants and ߙଵܧ, total energy. 

It is to be remarked that when the Hamiltonian does not involve time explicitly, one can solve 
a mechanical problem by using either Hamilton’s principal function or Hamilton’s 
characterstic function.  

10.2 ACTION ANGLE VARIABLES: 

 We have seen that Hamiltonian Formalism allows much wider class of coordinate 
transformations. A suitable choice of new conjugate variables can simplify the situation 
drastically. In many cases there is a natural choice of variables, which simplify the problem - 
they are known as “action-angle variables”. 

 Consider a more general example of a 1-d system with potential V (q), which has 
(local) minimum. The trajectories in phase-space will be closed orbits with constant total 
energy. We conjectured and proved that the correct choice for the actions variable is 
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that is the area of phase-space enclosed by an orbit (multiplied by 1/2π). It is a function of E 
only. The angle variable can be calculated as 

     

We note that all 1-d systems are integrable because E is conserved. We discussed two ways of 
proving the above result. First, by direct integration of 

 

over one orbit. Second, alternative proof uses generating function. Here I describe the latter. 
Consider F(q, θ). The motion is periodic in q, p, therefore it must be periodic in θ. Thus, F is 
periodic in θ. Recall the expression for the differential of F 

 

In our case H′ = H and we obtain 

     

Let us integrate over a single period: q returns to its original value, while θ changes by 
amount, which we choose to be period 2π. From periodicity of F it follows that 

 

10.3 SUMMARY: 

This lesson delves into two advanced topics in classical mechanics: the Hamilton-Jacobi 
equation and action-angle variables. 

 Hamilton-Jacobi Equation: 

o We begin by introducing the Hamilton-Jacobi equation, a first-order partial 
differential equation that can be used to determine the motion of a system. 

o We explore how Hamilton's characteristic function, a solution to this equation, 
can be used to find the canonical transformation that renders the Hamiltonian 
time-independent. 

o This approach provides an alternative and often more elegant method for 
solving classical mechanics problems compared to traditional Newtonian or 
Lagrangian methods. 
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 Action-Angle Variables: 

o We then transition to action-angle variables, a set of canonical coordinates 
particularly useful for analyzing systems with periodic or quasi-periodic 
motion. 

o Action variables are constants of motion, while angle variables increase 
linearly with time, simplifying the description of the system's evolution. 

o We demonstrate how action angle variables simplify the description of 
systems such as the harmonic oscillator, and other integrable systems. 

o The connection between these topics is that the Hamilton-Jacobi equation is a 
tool that can be used to find canonical transformations, which are used to find 
the action angle variables. 

o We will also discuss how the Hamilton-Jacobi theory connects to the idea of 
integrability, and how it is used to find the conserved quantities of a system. 

10.4 TECHNICAL TERMS: 

 Hamilton-Jacobi equation, Hamilton's characteristic function and Action angle 
 variables. 

10.5 SELF-ASSESSMENT QUESTIONS: 

1) Derive Hamilton-Jacobi equation for Hamilton's characteristic function? 

2) Write Action angle variables? 

10.6 SUGGESTED READINGS: 

1) Classical Mechanics: H. Goldstein  

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma  

 

Dr. S. Balamurali Krishna 

 

 

 

 



LESSON-11 

EULER ANGLES 

11.0 AIM AND OBJECTIVES:  

To learn about  

 The Euler angles-first rotation, second rotation and third rotation 

 Angular momentum 

 Inertia tensor 

The aim of this lesson is to provide an understanding of the key concepts related to rotational 
dynamics, focusing on Euler angles, angular momentum, and the inertia tensor. The lesson 
will explore how these concepts are used to describe the motion of rigid bodies and how they 
are interconnected in classical mechanics. 

By the end of the lesson, students will be able to: 

1) Euler Angles: Understand the concept of Euler angles and their use in describing the 
orientation of a rotating body. Students will learn how to apply these angles to 
describe the first, second, and third rotations during the movement of a rigid body. 

2) Angular Momentum: Grasp the concept of angular momentum, how it is calculated, 
and its importance in understanding the rotational motion of a system. Students will 
learn how angular momentum relates to torque and conservation laws. 

3) Inertia Tensor: Understand the inertia tensor and its role in characterizing the 
rotational inertia of a rigid body. Students will learn how the tensor is used to 
calculate the moment of inertia for arbitrary axes of rotation. 

4) Analyze the interrelationship between these concepts to solve real-world problems 
related to rigid body rotation. 

STRUCTURE: 

11.1 The Euler Angles-First Rotation, Second Rotation and Third Rotation 

11.2  Angular Momentum 

11.3  Inertia Tensor 

11.4 Euler’s Equations of Motion for a Rigid Body 

 11.4.1 Newtonian Method 

 11.4.2 Lagrange’s Method 
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11.5 Summary 

11.6 Technical Terms 

11.7 Self-Assessment Questions 

11.8 Suggested Readings 

11.1 EULER’S ANGLES: 

We are interested in knowing three independent parameters to specify the orientation 
of body set of axes relative to the space set of axes. For this purpose, we use three angles. 
These angles may be chosen in various ways, but the most commonly used set of three angles 
are the Euler’s angles, represented by ∅,ߠ and ߰.  

We can reach an arbitrary orientation of the body set of axes ܺᇱ,ܻᇱ,ܼ′ from space set 
of axes (ܺ,ܻ,ܼ) by making three successive rotations performed in a specific order. 

 

Fig. 11.1: Euler’s Angles-First Rotation ࣘ, Defining Precession Angle 

1) First rotation (ࣘ): First the space set of axes is rotated through an angle ߶ counter-
clock wise about the Z-axis so that Y-Z plane takes the new position ଵܻ − ܼଵ and this 
new plane ଵܻ − ܼଵ contains the ܼ′ axis of the body coordinate system. Now the new 

position of the coordinate system ଵܺ ଵܻܼଵ (with ܼ = ܼଵ) [Fig. 11.1]. If ଓ̂′, ଔ̂′, ݇ ′ are the 

unit vectors along ܺ,ܻ,ܼ axes and ଓଵ̂, ଔଵ̂, ݇ଵ along ଵܺ ଵܻܼଵ axes respectively, then the 
transformation to this new set of axes from space set of axes is represented by the 
equations 

ଓଵ̂ = ଓ̂߶ݏܿ +  ଔ̂߶݊݅ݏ

ଔଵ̂ = ଓ̂߶݊݅ݏ− +  ଔ̂    (1)߶ݏܿ

݇ଵ = ݇ 
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or   
ଓଵ̂
ଔଵ̂
݇ଵ
 = 

cos߶ sin߶ 0
߶݊݅ݏ− ߶ݏܿ 0

0 0 1
൩ 
ଓ̂
ଔ̂
݇
൩    (2) 

Thus XYZ axes are transformed ଵܺ ଵܻܼଵ by the matrix of tranformation 

ܦ = 
cos߶ sin߶ 0
߶݊݅ݏ− ߶ݏܿ 0

0 0 1
൩     (3) 

The angle ߶ is called the precession angle. 

2) Second Rotation (ࣂ): Next intermediate axes ଵܺ ଵܻܼଵare rotated about ଵܺ axis counter 
clock wise through an angle ߠ to the position ܺଶ ଶܻܼଶ so that ଵܻ, ܼଵ axes acquire the 
positions ଶܻ,ܼଶ with ܼଶ = ܼ′ [Fig.11.2]. This also results the plane ܺଶ. ଶܻ in plane 

ܺ′ܻ′. If ଓ̂ଶ, ଔଶ̂, ݇ଶ are unit vectors along ܺଶ ଶܻܼଶ axes respectively, then 

 

Fig. 11.2: Euler’s Angles-Second Rotation ࣂ, defining Nutation Angle 

ଓଵ̂ = (ଓଵ̂. ଓ̂)ଓ̂ + (ଓଵ̂. ଔ̂)ଔ̂ + (ଓଵ̂. ݇) ݇ 

 = ଓ̂߶ݏܿ + ݏܿ ቀగ
ଶ
−߶ቁ ଔ̂ + ݏܿ గ

ଶ
݇ 

= ଓ̂߶ݏܿ +  ଔ̂߶݊݅ݏ

ଔଵ̂ = (ଔଵ̂. ଓ̂)ଓ̂ + (ଔଵ̂. ଔ̂)ଔ̂ + (ଔଵ̂. ݇) ݇ 

= ݏܿ ቀ
ߨ
2 + ߶ቁ ଓ̂ + ଔ̂߶ݏܿ = ଓ̂߶݊݅ݏ− +  ଔ̂߶ݏܿ

or   
ଓ̂ଶ
ଔଶ̂
݇ଶ
 = 

1 1 0
0 ߠݏܿ ߠ݊݅ݏ
0 ߠ݊݅ݏ− ߠݏܿ

൩ 
ଓଵ̂
ଔଵ̂
݇ଵ
   (4) 
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In this case the matrix of transformation is  

ܥ    = 
1 0 0
0 ߠݏܿ ߠ݊݅ݏ
0 ߠ݊݅ݏ− ߠݏܿ

൩    (5) 

The angle ߠ is called the nutation angle.The ܺଶ = ଵܺ axis is at the intersection of the 
ܺ − ܻ and ܺଶ − ଶܻ planes and is called the line of nodes. 

3) Third rotation (࣒): Finally the third rotation is performed about ܼଶ =  axis through ′ݖ
an angle ߰ counter-clockwise so that ܺଶ, ଶܻ axes coincide ܺଷ = ܺᇱ , ଷܻ = ܻ′ [Fig. 
11.3]. 

Thus these three rotations ߶,ߠ, ܽ݊݀ ߰ bring the space set of axes to coincide with 
body set of axes. Thus ߶,  angles can be taken as three generalized coordinates. Now ߰ ݀݊ܽ,ߠ

ଓ̂ଷ = ଓ̂ᇱ = ଓ̂ଶܿ߰ݏ + ଔଶ̂߰݊݅ݏ 

ଔଷ̂ = ଔ̂ᇱ = −ଓ̂ଶ߰݊݅ݏ + ଔଶ̂ܿ߰ݏ    

݇ଷ = ݇ ᇱ = ݇ଶ 


ଓ̂ᇱ
ଔ̂ᇱ
݇ ᇱ
൩ = 

cos߰ sin߰ 0
߰݊݅ݏ− ߰ݏܿ 0

0 0 1
൩ 
ଓ̂ଶ
ଔଶ̂
݇ଶ
     (6) 

So that the transformation matrix is  

ܤ   = 
cos߰ sin߰ 0
߰݊݅ݏ− ߰ݏܿ 0

0 0 1
൩     (7) 

The angle ߰ is called the body angle. 

In this way we have reached at the body set of axes after three successive rotations of 
space set of axes. We may write the complte matrix of transformation  as 


ଓ̂′
ଔ̂′
݇ ′
൩ = ܣ 

ଓ̂
ଔ̂
݇
൩  ݎ 

′ݔ
′ݕ
′ݖ
൩ = ܣ ቈ

ݔ
ݕ
ݖ
   (8) 

But using (2), (3), (4), (5), (6) and (7), we get 


ଓ̂′
ଔ̂′
݇ ′
൩ = 

ଓ̂ଷ
ଔଷ̂
݇ଷ
 =  ܤ

ଓ̂ଶ
ଔଶ̂
݇ଶ
 =  ܥܤ

ଓଵ̂
ଔଵ̂
݇ଵ
 = ܦܥܤ 

ଓ̂
ଔ̂
݇
൩  (9) 
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Fig. 11.4: Euler’s angles-Third rotation ࣒, defining body angle, (b) The three Eulerian 
angle ࣘ,࣒ ࢊࢇ ࣂ in different planes. 

From (8) and (9) we see that the complete matrix of tranformation from space set of 
axes to body set of axes is  

ܣ       =  (10)    ܦܥܤ

The inverse transformation from body set of axes to space set of axes will be given by  

ቈ
ݔ
ݕ
ݖ
 = ଵିܣ 

′ݔ
′ݕ
′ݖ
൩ 

Now  

ܣ = ܦܥܤ = 
߰ݏܿ ߰݊݅ݏ 0
߰݊݅ݏ− ߰ݏܿ 0

0 0 1
൩ 

1 0 0
0 cosߠ sinߠ
0 ߠ݊݅ݏ− cos ߠ

൩ 
cos߶ sin߶ 0
− sin߶ cos߶ 0

0 0 1
൩ 

  = 
cos߰ sin߰ 0
− sin߰ cos߰ 0

0 0 1
൩ 

cos߶ ߶݊݅ݏ 0
߶݊݅ݏߠݏܿ− ߶ݏܿߠݏܿ ߠ݊݅ݏ
߶݊݅ݏߠ݊݅ݏ ߶ݏܿߠ݊݅ݏ− ߠݏܿ

൩------- (11) 

The inverse tranformation matrix from body set of axes to space set of axes is given by 
ଵିܣ =  because A represents a proper orthogonal matrix. Thus்ܣ

ଵିܣ = 
߶ݏܿ ߰ݏܿ − ߰݊݅ݏ ߶݊݅ݏ ߠݏܿ ߶ݏܿ ߰݊݅ݏ− − ߶݊݅ݏ ߠݏܿ ߰ݏܿ ߶݊݅ݏ ߠ݊݅ݏ
߶݊݅ݏ߰ݏܿ + ߶ݏܿߠݏܿ߰݊݅ݏ ߶݊݅ݏ߰݊݅ݏ− + ߶ݏܿ ߠݏܿ߰ݏܿ ߶ݏܿߠ݊݅ݏ−

ߠ݊݅ݏ߰݊݅ݏ ߠ݊݅ݏ߰ݏܿ ߠݏܿ
൩----

--(12) 

11.2 ANGULAR MOMENTUM AND INERTIA TENSOR: 

 Considered as a linear operator that transforms into L, the matrix I has elements that 
behave as the elements of a second-rank tensor. The quantity I is therefore identified as a 
second-rank tensor and is usually called the moment of inertia tensor or briefly the inertia 
tensor. 
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The kinetic energy of motion about a point is  

ܶ =  ଵ
ଶ
݉ݒଶ,       (1) 

where v, is the velocity of the ith particle relative to the fixed point as measured 

in the space axes. By Eq. (5.2), T may also be written as 

T = ଵ
ଶ
݉ݒ  . ( ߱ ×  )      (2)ݎ

which, upon permuting the vectors in the triple dot product, becomes  

T = ఠ
ଶ

 .݉ ݎ)   ×  )      (3)ݒ 

The quantity summed over i will be recognized as the angular momentum of the body about 
the origin, and in consequence, the kinetic energy can be written in the form 

T = ఠ.
ଶ

=  ఠ.ூ.ఠ
ଶ

     (4) 

Let n be a unit vector in the direction of w so that ߱ = ωπ. Then an alternative form for the 
kinetic energy is  

T = ఠ
మ

ଶ
 ݊. .ܫ ݊ = ଵ

ଶ
 ଶ    (5)߱ܫ

where I is a scalar, defined by 

 I = n. 1. n = ݉(ݎଶ −  ଶ)    (6)(݊.ݎ)

and known as the moment of inertia about the axis of rotation. In the usual elementary 

discussions, the moment of inertia about an axis is defined as the sum, over the particles of 

the body, of the product of the particle mass and the square of the perpendicular distance 

from the axis. It must be shown that this definition is in accord with the expression given in 

Eq. (6). The perpendicular distance is equal to the magnitude of the vector ri x n. Therefore, 

the customary definition of I may be written as  

I = mi (ri xn). (ri x n).     (7) 

Multiplying and dividing by w², this definition of I may also be written as  

I =  
ఠమ ( ߱ × .(ݎ ( ߱ ×  (ݎ

But each vector in the dot product is exactly the relative velocity v, as measured in the space 

system of axes. Hence, I so defined is related to the kinetic energy by 

I = ଶ்
ఠమ , 
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which is the same as Eq (6), and therefore I must be identical with the scalar defined by  
Eq. (7). The value of the moment of inertia depends upon the direction of the axis of rotation. 
As a usually changes its direction with respect to the body in the course of time, the moment 
of inertia must also be considered a function of time. When the body is constrained so as to 
rotate only about a fixed axis, then the moment of inertia is a constant. In such a case, the 
kinetic energy (4) is almost in the form required to fashion the Lagrangian and the equations 
of motion. The one further step needed is to express was the time derivative of some angle, 
which can usually be done without difficulty. 

 

Fig. 11.5: The definition of Moment of Inertia 

 

Fig. 11.6: The Vectors involved in the Relation between Moments of Inertia 
about Parallel Axes 
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Along with the inertia tensor, the moment of inertia also depends upon the choice of 
origin of the body set of axes. However, the moment of inertia about some given axis is 
related simply to the moment about a parallel axis through the center of mass. Let the vector 
from the given origin O to the center of mass be R, and let the radii vectors from O and the 
center of mass to the ith particle be r, and r, respectively. The three vectors so defined are 
connected by the relation (Fig. 3) 

rl = R + ݎᇱ.    (8) 

The moment of inertia about the axis a is therefore 

Ia = mi (ri xn)² = mi [(ݎᇱ. + R) x n]² 

Or 

Ia = M (R x n)² + mi (ݎᇱ x n)²  +2mi (R x n). (ݎᇱ x n), 

where M is the total mass of the body. The last term in this expression can be rearranged as 

-2(R x n) (n x mi .ݎᇱ  ) 

By the definition of center of mass, the summation m₁r vanishes. Hence, la can be expressed 
in terms of the moment about the parallel axis b as  

Ia = Ib + M(R x n)2 =  

Ib + MR2 sin² (9)      .ߠ 

The magnitude of Rxn, which has the value R sine, where is the angle between R and n, is the 
perpendicular distance of the center of mass from the axis passing through O. Consequently, 
the moment of inertia about a given axis is equal to the moment of inertia about a parallel 
axis through the center of mass plus the moment of inertia of the body, as if concentrated at 
the center of mass, concerning the original axis. 

The inertia tensor is defined in general from the kinetic energy of rotation about 

an axıs, and is written as 

Trotation = ଵ
ଶ
݉(߱ × )ଶݎ =  ଵ

ଶ
߱ఈ߱ఉ݉൫ߜఈఉݎଶ −  ఉ൯ݎఈݎ

where Greek letters indicate the components of & and r,. In an inertial frame, the sum is over 
the particles in the body, and ria is the ath component of the position of the ith particle. 
Because Trotation is a bilinear form in the components of w, it can be written as 

Trotation = ଵ
ଶ
 ,ఈఉ߱ఈ߱ఉܫ
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Where 

ఈఉܫ =  ݉൫ߜఈఉݎଶ −  ఉ൯  (10)ݎఈݎ

is the moment of inertia tensor. To get the moment of inertia about an axis through the center 
of mass, choose the rotation about this axis For a body with a contin- uous distribution of 
density p(r), the sums in the components of the moment of inertia tensor in Eq. (10) reduce to 

(ݎ)ߩ∫ = ஒܫ ൫ݎଶߜஒ −  ஒ൯ܸ݀  (11)ݎݎ

As an example, let us consider a homogeneous cube of density p, mass M, and side a. Choose 
the origin to be at one corner and the three edges adjacent to that corner to lie on the +x, +y, 
and +z axes. If we define b = Ma², then straightforward integration of Eq. (11) gives 

I = 

⎝

⎜
⎛

ଶ
ଷ
ܾ − ଵ

ସ
ܾ − ଵ

ସ
ܾ

− ଵ
ସ
ܾ ଶ

ଷ
ܾ − ଵ

ସ
ܾ

− ଵ
ସ
ܾ − ଵ

ସ
ܾ ଶ

ଷ
ܾ ⎠

⎟
⎞

 

Thus, both the moment of inertia and the inertia tensor possess a type of revolution, relative 
to the center of mass, very similar to that found for the linear and angular momentum and the 
kinetic energy. 

11.4 EULER’S EQUATIONS OF MOTION FOR A RIGID BODY: 

11.4.1 Newtonian Method: If a rigid body is rotating under the action of a torque  with one 
point fixed, then the torque is expressed as 

߬ = 
ܬ݀
൨௦ݐ݀

             (1) 

Where J is the angular momentum and its time derivative refers to the space set of axes, 
represented by the subscript s, because the equation holds in an inertial frame. 

 The body coordinate system is rotating with an instantaneous angular velocity m. The 
time derivatives of angular momentum J in the body coordinate and space coordinate systems 
are related as 


ܬ݀
൨௦ݐ݀

= 
ܬ݀
൨ݐ݀

+ ߱ ×  (2)               ܬ

Thus 

߬ =
ܬ݀
ݐ݀ + ߱ ×  (3)                   ܬ
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where we have dropped the body subscript because we shall represent the physical quantities 
of right hand side in the body coordinate system. 

We choose principal axes for body set of axes. If I1, I2and I3 are the principal moments 
of inertia, then 

ܬ = ଵ߱ଵଓ̂ܫ + ଶ߱ଶଔ̂ܫ + ଷ߱ଷ݇                             (4)ܫ  

Where ߱ = ߱ଵଓ̂ + ߱ଶଔ̂ + ߱ଷ݇   is the angular velocity with components, 1, 2 and 3 along 
the principal axis. 

As the principal moments of inertia and body base vectors ଓ ො,ଔ ෝand ݇   are constants in 
time with respect to the body coordinate system, we find that in the body coordinate system, 
using  the time derivative of J is 

ܬ݀
ݐ݀ = ଵ߱ଵ̇ܫ ଓ̂ + ଶ߱ଶ̇ܫ ଔ̂ + ଷ߱ଷ̇ܫ ݇                (5) 

Substituting in(3), we obtain 

߬ = ଵ߱ଵ̇ܫ ଓ̂ + ଶ߱ଶ̇ܫ ଔ̂ + ଷ߱ଷ̇ܫ ݇  + ൫߱ଵଓ̂ + ߱ଶଔ̂ + ߱ଷ݇ ൯ × ଵ߱ଵଓ̂ܫ) + ଶ߱ଶଔ̂ܫ + ଷ߱ଷ݇ ܫ )    (6) 

Writing = ଵଓ̂ + ଶଔ̂ + ଷ݇  , we can obtain the x, y, z components of the torque  as 

ଵ = ଵ߱̇ଵ ܫ + ଷܫ) −  ଶ)߱ଶ߱ଷ                     (7)ܫ

ଶ = ଶ߱̇ଶ ܫ + ଷܫ) −  ଵ)߱ଷ߱ଵ                     (8)ܫ

ଷ = ଷ߱̇ଷ ܫ + ଶܫ) −  ଵ)߱ଵ߱ଶ                     (9)ܫ

Eqs. (6) are known as Euler’s equations for the motion of a rigid body with one point 
fixed under the action of a torque. These equations can also be derived from Lagrange’s 

equations, when the generalized forces G, are the torques and Euler’s angles () are the 
generalized coordinates. 

11.4.2 Lagrange’s Method: When a rigid body, is rotating with one point fixed, Euler’s 
angles completely describe the orientation of the rigid body. In case of the rotating rigid body, 

we take the Euler’s angles () as the generalized coordinates and components of the 
applied torque as the generalized forces corresponding to these angles. For conservative 
system, Lagrangian for the systems is 

ܮ = ܶ൫߮̇, ,ߠ̇ ̇,߮, ൯,ߠ −  (1)                       (,ߠ,߮)ܸ
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where T is the rotational kinetic energy and is given by 

߬ =
1
2

ଵ߱ଵଶܫ) + ଶ߱ଶܫ 
ଶ + ଷ߱ଷܫ 

ଶ)                                  (2)   

Where the body axes are taken as principal axes. 

In view of the angular velocity components 1, 2, 3 along the principal axes can be 
written as 

߱ଵ = ݊݅ݏߠ݊݅ݏ̇߮ +  ݏܿߠ̇

߱ଶ = ݏܿߠ݊݅ݏ̇߮ +                                   (3)ݏܿߠ̇

߱ଷ = ߠݏܿ߮ + ̇̇  

The Lagrangie’s equation for  coordinate is 

݀
ݐ݀ 

ܮ߲
߲̇൨ −

ܮ߲
߲ = 0                                                 (4) 

But for L=T-V, given by (2), 

݀
ݐ݀ 

߲ܶ
߲̇൨ −

߲ܶ
߲ = −

߲ܸ
߲                                           (5) 

Because డ
డ̇

=0 

However, the angle y is the angle of rotation about the principal Z-axis and is one of 

the generalized coordinates in the present problem. The generalized force 

ቂܩ = − డ
డ
ቃ coresponding to the generalized coordinate  is obviously the Z-

component of the impressed torque i.e., 

߬ଷ = ܩ = −
߲ܸ
߲ 

߬ଷ =
݀
ݐ݀ 

߲ܶ
߲̇൨ −

߲ܶ
߲ 

߬ଷ =
݀
ݐ݀


߲ܶ
߲߱

߲߱

߲̇


൩ −
߲
߲


߲ܶ
߲߱

߲߱

߲̇


൩                        (6) 

But from (65), we get 

ܶ =
1
2ܫ߱

ଶ
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Therefore, డ்
డఠ

=  ߱ܫ

From (4), we obtain 

߲߱ଵ
߲̇ =

߲߱ଶ

߲̇ = 0 ܽ݊݀ 
߲߱ଷ

߲̇ = 1 

So that 


߲ܶ
߲߱

߲߱

߲̇


=  ଷ߱ଷ                       (7)ܫ

Also from (4), we get 

߲߱ଵ
߲ = −ݏܿߠ݊݅ݏ̇߮− ݊݅ݏߠ̇ = ωଶ 

߲߱ଶ

߲ = −݊݅ݏߠ݊݅ݏ̇߮− ݏܿߠ̇
߲ܶ
߲߱

߲߱

߲̇


= −ωଵ 

߲߱ଷ

߲ = 0 

Hence 


߲ܶ
߲߱

߲߱

߲


=
߲ܶ
߲߱ଵ

߲߱ଵ
߲ +

߲ܶ
߲߱ଶ

߲߱ଶ

߲ +
߲ܶ
߲߱ଷ

߲߱ଷ

߲  

= ଵ߱ଵ߱ଶܫ + ଶ߱ଶ(−߱ଵ)ܫ = ଶܫ)− −  ଵ)߱ଵ߱ଶ                       (8)ܫ

Substituting the values from (2) or (7) and (8) in (2), we get 

߬ଷ =
݀
ݐ݀

(ଷ߱ଷܫ) + ଶܫ) −  ଵ)߱ଵ߱ଶܫ

or 

߬ଷ = ଷ߱ଷ̇ܫ + ଶܫ) −  ଵ)߱ଵ߱ଶ                                                  (9)ܫ

Which is the third Euler’s equation obtained earlier. One may obtain the other two 
Euler’s equations by simply cyclic permutation. Not that these two equations do not 
correspond to θ and ϕ coordinates. 

In case a rigid body is rotating about a fixed axis, say principal Z-axis, then 

߱ଵ = ߱ଶ = 0 ܽ݊݀ ߱ଷ =  

Therefore, from eqs. (9) We have the equations of motion as 

߬ଵ = ߬ଶ = 0 
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߬ଷ = ߬ ݎ ̇߱ ଷܫ =  (10)                                                       ߱ܫ

and 

Where we have put 3= and I3=I corresponding to Z-axis is 

Instantaneous angular momentum about Z-axis is  

J3=I33 or J=I                       (11) 

And instantaneous rotational kinetic energy is 

ܶ =
1
2߱ ∙ ܬ =

1
2 ߱ܫ

ଶ                       (12) 

11.5 SUMMARY:  

This lesson covers the fundamental principles of rotational dynamics, focusing on 
three key concepts: Euler angles, angular momentum, and the inertia tensor. Euler angles are 
used to describe the orientation of a rotating body in three-dimensional space through a series 
of rotations. Angular momentum is introduced as a key quantity that describes a body’s 
rotational motion and is related to the forces acting on the system. The inertia tensor is a 
mathematical representation that encodes the distribution of mass in a rigid body and is 
crucial for determining its rotational behavior. Together, these concepts provide a 
comprehensive framework for analyzing and understanding the dynamics of rotating systems 
in classical mechanics. 

11.6 TECHNICAL TERMS:   

 Euler angles, Angular momentum and Inertia tensor. 

11.7 SELF-ASSESSMENT QUESTIONS: 

1) Write a brief note on Euler angles.  

2) What is Angular momentum and Inertia tensor? 

11.8 SUGGESTED READINGS: 

1) Classical Mechanics: H.Goldstein 

2) Mechanics: Simon  

3) Mechanics: Gupta, Kumar and Sharma  

 

Dr. S. Balamurali Krishna 

 



LESSON-12 

 DYNAMICS OF RIGID BODY 

12.0 AIM AND OBJECTIVES:  

To learn about-  

 Principal axes and principal moments of inertia 

 Rotational kinetic energy of a rigid body 

 Torque-free motion of a rigid body 

The aim of this lesson is to explore the concepts of principal axes and moments of inertia, 
rotational kinetic energy, and torque-free motion in rigid body dynamics. The lesson will 
focus on understanding how these principles are essential for analyzing the motion of a rigid 
body and how they contribute to a deeper understanding of rotational motion in classical 
mechanics. 

By the end of the lesson, students will be able to: 

1) Principal Axes and Principal Moments of Inertia: Understand the concept of principal 
axes and principal moments of inertia. Students will learn how to find the principal 
axes of a rigid body and calculate its corresponding moments of inertia, and why they 
are crucial in simplifying rotational motion problems. 

2) Rotational Kinetic Energy: Grasp the concept of rotational kinetic energy, and how it 
is related to the moment of inertia and angular velocity of a rigid body. Students will 
learn how to calculate rotational kinetic energy and understand its significance in 
energy conservation in rotational systems. 

3) Torque-Free Motion of a Rigid Body: Understand the dynamics of a rigid body that is 
not subject to any external torque, and how it behaves under such conditions. Students 
will learn the implications of torque-free motion, such as the conservation of angular 
momentum and the importance of initial conditions in determining the body’s motion. 

STRUCTURE: 

12.1  Principal Axes and Principal Moments of Inertia 

12.2  Rotational Kinetic Energy of a Rigid Body 

12.3  Torque-Free Motion of a Rigid Body 

12.4  Summary 

12.5  Technical Terms 

12.6  Self-Assessment Questions 

12.7 Suggested Readings 
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12.1 PRINCIPAL AXES AND PRINCIPAL MOMENTS OF INERTIA:  

 A point mass moving along a circular path has an angular velocity vector, ω~, 
directed along the axis of the circle, and an angular momentum vector, L~, relative to the 
center of the circle which is parallel to the angular velocity. The quantities are related in 
magnitude b y L = M R2ω where M is the particle mass and R is the radius of the circle. The 
combination M R2 is the moment of inertia of the point mass relative to the axis of rotation.1 
An extended rigid body may be viewed as a distribution of point masses. If such a rigid body 
rotates about some fixed axis, the angular velocity vector and the angular momentum vector 
are not, in general, parallel. However, a relation bet ween ω~ and the component of L~ which 
is parallel to ω~ can still be written down. The proportionality factor is the moment of inertia 
of the rigid body relative to the axis of rotation, 

 (1) 

where L ω is the component of L~ in the same direction as ω~ . That is, L~· ω~ = Lω cos α ≡ 
L ω ω, α being the angle bet ween L~ and ω~. I is the moment of inertia of the rigid body 
relative to the axis of rotation determined b y the vector ω~ . For an extended rigid object it is 
the analog of what M R2 is for a point object of mass M moving in a circle of radius R. In 
fact, b y considering the rigid body as a collection of point masses, each its own distance 
from the axis of rotation, one can directly calculate the moment of inertia for the object under 
consideration.2 The other components of L~ (those perpendicular to ω~) cannot be related to 
ω~ via a relation such as Eq.(1). Suppose that L~ is parallel to ω~. Then L~ has no 
components perpendicular to ω~, and Eq.(1) can be written as a vector equation: 

L~ = I ω~. (2) 

The conditions under which Eq. (2) is satisfied usually exist if the angular velocity ω~ 
is directed along one of the symmetry axes of the object. 3 These are called the principal axes 
of inertia of the object and the moments of inertia relative to these axes are the principal 
moments of inertia. As an illustration of these concepts, consider the following situation. 
Suppose that relative to a fixed inertial reference frame the angular momentum vector of a 
rotating rigid body is given by: L~ = [A sin(α)sin(ωt + δ)] xˆ + [A sin(α) cos(ωt + δ)] yˆ + [A 
cos α]zˆ. Here A, α and δ are constants, t is the time, and ω is the magnitude of the angular 
velocity of the rotating rigid body. The vector ω~ has magnitude and direction given b y ω~ = 
ωzˆ. The quantities xˆ, yˆ, and zˆ are unit vectors along the coordinate axes of the inertial 
reference frame. It is clear that L~ and ω~ are not parallel (ω~ does not have x- and y-
components, L~ does). The axis of rotation of this object is thus not one of the principal axes 
of inertia. 
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12.2 ROTATIONAL KINETIC ENERGY OF A RIGID BODY: 

The rotational kinetic energy of the solid body is 

ݐݎܶ = ଵ
ଶ
ଶݒ݉∑ = ݒ∑ ⋅ ݒ݉ = ଵ

ଶ
∑(߱ ×  (29)              (ݎ

The triple scalar product is the volume of a parallelepiped, which justifies the next step: 

Trot=ଵ
ଶ
∑ω⋅(r×p)                                     (30) 

All particles have the same angular velocity, so: 

Trot=ଵ
ଶ
ω⋅∑(r×p)=ଵ

ଶ
ω⋅L=ଵ

ଶ
ω⋅I ω                (31) 

Thus we arrive at the following expressions for the rotational kinetic energy: 

 Trot=ଵ
ଶ
ωL=ଵ

ଶ
ωI ω                                    (32) 

If it is rotating about a principal axis, they are parallel, and the expression reduces to the 

familiar ଵ
ଶ
 .ωଶ ܫ

12.3 TORQUE-FREE MOTION OF A RIGID BODY: 

(1) Equations of Motion: When a rigid body is not subjected to any net toque, the Euler’s 
equations of motion of the body with one point fixed reduced to  

ଵ߱̇ଵ-ܫ = ଶܫ) −  ଷ)߱ଶ߱̇ଷ      (1)ܫ

ଶ߱̇ଶ-ܫ = ଷܫ) −  ଵ)߱ଷ߱̇ଵ      (2)ܫ

ଷ߱̇ଷ-ܫ = ଵܫ) −  ଶ)߱ଵ߱̇ଶ      (3)ܫ

In case the body is not subjected to any net forces or torques, its centre of mass is either at 
rest or moves with uniform velocity. Obviously we may discuss the rotational motion of the 
rigid body in a reference system in which the center of mass is stationary and choose the 
centre of mass as fixed point and origin for the principal axes in the body. In such case, we 
obtain from (12) two integrals of motion, describing the kinetic energy and angular 
momentum as constant in time. 

If we multiply eqs (12) by 1, 2, 3 respectively and then add, we obtain 

ଵ߱ଵ߱̇ଵܫ + ଶ߱ଶ߱̇ଶܫ + ଷ߱ଷ߱̇ଷܫ  = ଶܫ) − ଷܫ + ଷܫ − ଵܫ + ଵܫ − ଶ)߱ଵ߱ଶ߱ଷܫ = 0 

݀
ݐ݀ ൬

1
2 ଵ߱ଵܫ

ଶ +
1
2 ଶ߱ଶܫ

ଶ +
1
2 ଷ߱ଷܫ

ଶ൰ = 0 

ଵ
ଶ
ଵ߱ଵଶܫ + ଵ

ଶ
ଶ߱ଶܫ

ଶ + ଵ
ଶ
ଷ߱ଷܫ

ଶ = ଵ
ଶ
߱. ܬ =  (4)           ݐ݊ܽݐݏ݊ܿ
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Which is the principle of conservation of total rotational kinetic energy in absence of 
external torque. 

As 

߬ =
ܬ݀
ݐ݀ = 0 

ܬ = ଵ߱ଵଓ̂ܫ + ଶ߱ଶଔ̂ܫ + ଷ߱ଷ݇ ܫ =  (5)   ݐ݊ܽݐݏ݊ܿ

 (2) Geometric description of the rigid body motion:  In case of torque–free motion of 
rigid body, we have written above eqs. (12 ) and consequently two integrals of motion (4) and 
(5). Now we describe an interesting geometrical description of the motion, called as 
Pointsot’s construction. In this context, first we shall describe intertia ellipsoid. 

(A) Intertia Ellipsoid: The kinetic energy of rotating rigid body in a coordinate system of 
principal axes is given by  

ܶ =
1
2߱. ܬ =

1
2ܫఈ߱ఈଶ

ଷ

ఈୀଵ

 

When angular velocity  is expressed as ߱ = ߱ො݊ = ߱ଵଓ̂ + ߱ଶଔ̂ + ߱ଷ݇   and I1, I2, I3are the 
principal moments of inertia and I is the moment of inertia about the axis of rotation. Thus we 
have 

ଵ߱ଵଶܫ ଶ߱ଶܫ +
ଶ + ଷ߱ଷܫ 

ଶ = ଶ߱ܫ = 2ܶ    (6) 

 

Fig. 12.5: The Motion of the Inertia Ellipsoid Relative to the Invariable Plane 

Let us define avector 
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ߩ = ො
√ூ

= ఠ
ఠ√ூ

= ఠ
√ூఠమ = ఠ

√ଶ்
       (7) 

ߩ = ଵଓ̂ߩ + ଶଔ̂ߩ + ଷ݇ ߩ         (8) 

So that ߩଵ = ఠభ
√ଶ்

 etc. are the components of  vector along principal axes. 

Hence eq.  

Iଵρଵଶ +  Iଶρଶଶ +  Iଷρଷଶ = 1       (9) 

This equation represents an ellipsoid in -space which is called as which is called as inertia 
ellipsoid As the direction of the axis of rotation changes in time, the p vector along the same 
direction moves accordingly and its top moves on the surface of the inertial ellipsoid. 

(B) Invariable Plane: Let a rigid body be rotating about a fixed point O. The body is not 
subjected to any external force or torque. Therefore, in absence of external torque, the angular 
momentum vector J is constant and has a fixed direction in space from figure. The  line along  
the direction  of the angular momentum vector is known as invariable line. 

 

Fig. 12.6:  Invariable Line and Plane 

For force free motion, the kinetic energy is also constant and hence 

߱ ∙ ܬ = 2ܶ =  (10)       ݐ݊ܽݐݏ݊ܿ

Thus the projection of   on  J (cosθ) is constant and therefore the tip of  describes a 
plane, called as the invariable plane. Now, as the body rotates, an observer, fixed in the body 
coordinate system, would see a rotation or precession of the angular velocity vector  with 
time about the angular momentum vector J. 

(C) Motion of the inertia ellipsoid on invariable plane : Since from eq. (7), ߩ = ఠ
√ଶ்

 , this 

gives for force-free motion 

ߩ ∙ ܬ = ఠ∙
√ଶ்

= √2ܶ =  (8)     ݐ݊ܽݐݏ݊ܿ
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because the kinetic energy is the constant of motion. Therefore the tip of  also describes an 

invariable plane in -space. In fact this plane is the tangent plane at the point . Let us prove 
this statement. From eq. (8) 

Iଵρଵଶ +  Iଶρଶଶ +  Iଷρଷଶ = 1 = F() (say)                       (9) 

Now, 

ܨ߲
߲ଵ

= ,ଵଵܫ2
ܨ߲
߲ଶ

= ,ଶଶܫ2
ܨ߲
߲ଷ

=  ଷଷ                       (10)ܫ2

Therefore, 

∇F = 2(Iଵߩଵଓ̂ + Iଶߩଶଔ̂ + Iଷߩଷ݇  )                                        (11) 

=
2
√2ܶ

൫Iଵ߱ଵଓ̂ + Iଶ߱ଶଔ̂ + Iଷ߱ଷ݇ ൯ = ඨ2
ܶ  (12)                       ܬ 

Thus the normal at the point  on the ellipsoid (in case force-free motion) is along the 

constant angular momentum vector J and the tangent plane at the point  is perpendicular to 

J. But the invariable plane is normal to the vector J and hence the tangent plane at  is the 
invariable plane. 

The distance between the origin of the ellipsoid and the tangent plane at the point p is 
given by above Fig.  

ߩ cosߠ =
ߩ ∙ ܬ
ܬ =

߱ ∙ ܬ
2ܶ√ܬ

=
√2ܶ
ܬ =  (13)                       ݐ݊ܽݐݏ݊ܿ

 In the present problem, we find that the distance between the origin of the ellipsoid 
and invariable plane reinains constant in time. Thus as the angular velocity vector  and 

hence  changes with time, the inertia ellipsoid rolls (without slipping) on the invariabte 
plane* with the centre of the ellipsoid at a constant height above the plane. The curve traced 
on the invariable plane by the point of contact with the ellipsoid is called the herpolhode and 
the corresponding curve described on the ellipsoid is called the Polhode. In other words, we 
can say that the polhode rolls without slipping on the herpolhode in the invariable plane. The 
polhode is a closed curve on the inertia ellipsoid because the inertia ellipsoid would move in 
order to maintain the heiglit of its origin above the invariable plane. However, the 
herpolhode, in general, is not a closed curve on the invariable plane. 

We have discussed the Poinsot’s geometrical construction to describe the force-free 
motion of a rigid body. The values of kinetic energy T and angular momentum J deterimine 
the direction of the invariable plane and the height of the centre of the ellipsoid above it. 
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Hence one may trace out the polhode and the herpolhode. The direction of the angular 
velocity  is the same as that of the vector  and the instantaneous orientation of  the body is 
given by the orientation of the ellipsoid , which is flxed in the body. 

Let us discuss the Poinsot's geometrical discussion for a symmetrical rigid body for 
which I1=I2. In this case, the inertia ellipsoid is an ellipsoid of revolution. The  vector and 
hence the angular velocity vector  will remain constant in magnitude. Consequently the 
polhode is a circle about the symmetry axis of the ellipsoid and herpolhode is a circle on the 
invariable plane. An observer sees that the angular velocity vector  moves on the surface of 
a cone. This is called body cone and its intersection with the inertia ellipsoid is the polhode. 
An observer, fixed in the space, sees also the angular vetocity vector  to move on the 
surface of cone, called as space cone. The intersection of this space cone with the invariable 
plane gives the herpolhode. In this way, the free tnotion ofa symtnetrical rigid body is 
described as tlie rolling of body cone on the spaceone. If I3< I1, the body cone is outside 
the space cone and if I3>I1 , the body cone rolls around the inside of the space cone [Fig]. In 
both cases the two cones are tangent to each other along the instantaneous axis of rotation. In 
any case, the direction of the angular ve1ocity.vector  precesses in time about the axis of 
symmetry of the body. 

 

Fig. 12.7: Motion of the Inertia Ellipsoid for a Symmetrical Body (I1=I2) 
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Fig. 12.8: Body Cone Rolling Around a Space Cone without Slipping;  

(a) outside (I3<I1)(b) inside (I3>I1). 

Poinsot’s geometrical discussion, described above, is in accordance with that obtained 

by using Euler’s equations for a rotating rigid body. 

12.4 SUMMARY:  

 This lesson introduces important concepts related to the rotational motion of rigid 

bodies. The principal axes and moments of inertia are explored, highlighting how they 

simplify the analysis of a body’s rotational behavior by identifying the axes about which 

rotation is most stable. The lesson also covers the concept of rotational kinetic energy, 

emphasizing how it depends on the distribution of mass (via the moment of inertia) and the 

angular velocity of the body. Finally, the concept of torque-free motion is examined, with a 

focus on the conservation of angular momentum and its role in predicting the future motion 

of a rigid body when no external torque is acting. Together, these concepts form a 

comprehensive foundation for understanding the rotational dynamics of rigid bodies. 

12.5  TECHNICAL TERMS:  

 Moment of Inertia, rigid body and Torque free motion. 
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12.6  SELF-ASSESSMENT QUESTIONS: 

1) Write about the Principal axes and principal moments of inertia. 

2) Derive the Rotational kinetic energy of a rigid body. 

3) What is Torque-free motion of a rigid body? 

12.7 SUGGESTED READINGS: 

1) Classical Mechanics: H.Goldstein. 

2) Mechanics: Simon.  

3) Mechanics: Gupta, Kumar and Sharma. 

 

 

Dr. S. Balamurali Krishna 



LESSON-13 

THEORY OF RELATIVITY-I 

13.0 AIM AND OBJECTIVES:  

To learn about- 

 Introduction to special theory of relativity 

 Galilean transformations 

 principle of relativity 

The aim of this lesson is to introduce students to the foundational concepts of the special 
theory of relativity, including Galilean transformations and the principle of relativity. The 
lesson will provide a basic understanding of how these concepts revolutionized our view of 
space, time, and motion, and laid the groundwork for modern physics. 

By the end of the lesson, students will be able to: 

1) Introduction to Special Theory of Relativity: Understand the fundamental concepts 
behind the special theory of relativity, including the invariance of the speed of light 
and the relationship between space and time. Students will also explore how Einstein's 
theory challenges classical Newtonian mechanics. 

2) Galilean Transformations: Learn about the Galilean transformation equations, which 
describe the relationship between space and time coordinates in different inertial 
frames of reference under classical mechanics, and understand how they are limited 
compared to relativistic transformations. 

3) Principle of Relativity: Grasp the principle of relativity, which states that the laws of 
physics are the same in all inertial frames of reference. Students will explore how this 
principle leads to the idea that the speed of light is constant for all observers, 
regardless of their motion. 

STRUCTURE: 

13.1  Introduction 

13.2  Principle of Relativity 

13.3  Galilean Transformations 

13.4  Summary 

13.5  Technical Terms 

13.6 Self-Assessment Questions 

13.7  Suggested Readings 
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13.1 INTRODUCTION: 

The chapter on "Introduction to the Theory of Relativity" lays the groundwork for 
understanding the transformative concepts that revolutionized classical mechanics. It begins 
by exploring the Principle of Relativity, which asserts that the laws of physics are the same in 
all inertial frames. The chapter delves into Galilean Transformations, which describe how 
physical quantities change between different inertial observers. It discusses the 
transformation of force and emphasizes the covariance of physical laws. Finally, the 
relationship between the Principle of Relativity and the constant speed of light is highlighted, 
paving the way for Einstein's revolutionary insights and their implications for modern 
physics.  

13.2 PRINCIPLE OF RELATIVITY: 

 Absolute velocity of a body has no meaning. The velocity has a meaning only when it 
is measured relative to some other body or frame of reference. If two bodies are moving with 
uniform relative velocity it is impossible to decide which of them is at rest or which of them 
is moving. This is known as principle of relativity. However, acceleration has an absolute 
meaning. For example, if we are sitting in a windowless accelerated aircraft, we can perform 
an experiment and measure its acceleration. But if the aircraft is moving with uniform 
velocity, we cannot measure its velocity. Of course, we measure its velocity relative to a body 
outside. Thus, the principle of relativity can be alternatively stated as follows. 

 It is impossible to perform an experiment which will measure the state of uniform 
velocity of a system by observations, confined to that system. 

 The motion of a body itself has no meaning unless, we do not know with respect to 
which this motion has been measured. This led Newton to think about the absolute space and 
it represents an absolute frame with respect to which every motion should be measured. 
However, in view of this principle of relativity, we cannot perform an experiment which will 
measure the uniform velocity of a reference system relative to the absolute frame by 
observations confined to that system. 

 In the unaccelerated windowless ship all experiments performed inside it will appear 
the same whether this ship is stationary or in uniform motion. Newton stated the principle of 
relativity as follows: 

 The motions of bodies included in a given space are the same among themselves 
whether that space is at rest or moving uniformly forward in a straight line. 

 Study of the physical laws involves the measurements of accelerations, forces etc 
among bodies. The principle of relativity can be stated in an elegant form as follows:  

 The basic laws of physics are identical in all inertial systems which move with 
uniform velocity with respect to one another. 
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 This principle is called Galilean or Newtonian principle of relativity and sometimes 
it is named as hypothesis of Galilean invariance. In fact, the principle of relativity is a 
fundamental postulate and is entirely consistent with the theory of special relativity. If any 
two inertial systems, moving with constant relative velocity, are connected by Galilean 
transformations, the principle of relativity is modified as: 

 The basic laws of physics are invariant in form in two reference systems connected by 
Galilean transformations. 

 This statement is somewhat special than the principle of relativity in the sense that it 
means the assumptions that the time and the space intervals are independent of the frame of 
reference. We shall see later in the theory of special relativity that the Galilean 
transformations are not correct, but the appropriate exact transformation equations are the 
Lorentz transformation equations for connecting any two frames in uniform relative motion. 
Thus, the principle of relativity may be stated as, 

 The basic laws of physics are invariant in form in two inertial frames connected by 
Lorentz transformations. 

13.3 GALILEAN TRANSFORMATIONS: 

 At any instant, the coordinates of a point or particle in space will be different in 
different coordinate systems. The equations which provide the relationship between the 
coordinates of two reference systems are called transformation equations. 

We have shown that a frame S' which is moving with constant velocity v relative to an 
inertial frame S, is itself inertial. 

 

Fig. 13.1: Representation of Galilean Transformations 

For convenience, if we assume (i) that the origins of the two frames coincide at t = 0, (ii) that 
the coordinate axes of the second frame are parallel to that of the first and (iii) that the 
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velocity of the second frames are related by the equation frame relative to the first is v along 
X-axis, then the position vectors of a particle at any instant t in the two 

 r' = r - vt       (1) 

In the component form, the coordinates are related by the equations  

 x' = x - vt; y'= y; z' = z     (2) 

Eq. (1) or (2) expresses the transformation of coordinates from one inertial frame to another 
and they are referred as Galilean transformations. 

The form of eq. (1) or (2) depends, of course, on the relative motion of two frames of 
reference, but it also depends upon certain assumptions regarding the nature of time and 
space. It is assumed that the time t is independent of any particular frame of reference i.e., if t 
and t' be the times recorded by the observers O and O' of an event occurring at P, then t' = t. If 
we add the equation t' = t, then the Galilean transformation equations are expressed as  

 x' = x - vt ; y'= y; z' = z; t' =t       (3) 

We can also consider that frame S is moving with velocity – v along the negative X-axis with 
respect to S' frame. Then the transformation equations from frame S' to S are  

 x = x' + vt', y = y' z = z' t = t'      (3') 

These are known as inverse Galilean transformations. 

The other assumption, regarding the nature of the space, is that the distance between two 
points (or two particles) is independent of any particular frame of reference. Evidently, this 
assumption is expressed by the form of the transformation eq. (1) or (3). If a rod has length L 
in the frame S with the end coordinates x1, and x2, then L = x2- x1. 

If at the same time the end coordinates of the rod in S' are x1' and x2', then  

L' = x2' – x1'. But for any time, t, from eq. (3), we have 

x2' – x1' = x2 – x1 

Therefore, L' = L        (4) 

Thus, the length or distance between two points is invariant under Galilean transformations. 
Differentiating eq. (1) with respect to time, we get 

ௗ
ௗ௧

= ݒ + ௗᇲ

ௗ௧
ݒ  =  + ௗᇲ

ௗ௧ᇲ
(or) 

u = v + u' .........      (5) 

 where u and u' are the observed velocities in S and S' frames respectively. 

Eq. (5) transforms the velocity of a particle from one frame to another and is known as 
Galilean (or classical) law of addition of velocities.  

Again differentiating eq. (5) with respect to time t, we have 
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ௗ௨
ௗ௧

= 0 + ௗ௨ᇲ

ௗ௧
 = ௗ௨

ᇲ

ௗ௧ᇲ
or   a = a' ......    (6) 

Hence according to Galilean transformations, the accelerations of a particle relative to S and 
S' frames are equal. It is to be mentioned that the Galilean transformations are based basically 
on two assumptions: 

1) There exists a universal time t which is the same in all reference systems.  
2) The distance between two points in various inertial systems is the same. 

 Thus, if any two events coincide for any observer, then they must occur 
simultaneously for all observers. In other words, the time interval between two given events 
must be identical for all systems reference. 

13.4 SUMMARY: 

This lesson introduces the foundational ideas of special relativity, starting with an 
understanding of Galilean transformations and the principle of relativity. The Galilean 
transformations describe how space and time coordinates transform when switching between 
inertial frames of reference in classical mechanics. However, the lesson emphasizes how the 
special theory of relativity, introduced by Einstein, alters these classical concepts, most 
notably by asserting that the speed of light is constant for all observers, regardless of their 
motion. This leads to the realization that time and space are not absolute but can vary 
depending on the observer's relative motion. By understanding these key concepts, students 
gain insight into how the laws of physics remain consistent across inertial frames and how 
classical mechanics is modified under high-speed conditions. 

13.5 TECHNICAL TERMS: 

 Galilean transformations, Principle of relativity. 

13.6 SELF-ASSESSED QUESTIONS:  

1) What is principle of relativity? Explain 
2) What do understand by the covariance of physical laws 
3) How does the principle of relativity lead the constancy of speed of light in all 

inertial frames 
4) Why is the speed of light significant in the context of the Principle of Relativity? 
5) What is Galilean or Newtonian principle of relativity?  

13.7 SUGGESTED READINGS: 

1) Classical Mechanics by H. Goldstein. 
2) Fundamentals of Classical Mechanics by  J.C. Upadhyaya.   
3) Classical Mechanics by G. Aruldhas, PHI Publishers.  
4) The Theory of Relativity and Applications, Allen Rea. 

 

Prof. G. Naga Raju 



LESSON-14 

THEORY OF RELATIVITY-II 

14.0 AIM AND OBJECTIVES:  

To learn about 

 Transformation of force from one inertial system to another 

 Covariance of the physical laws 

 Principle of relativity and speed of light. 

 The aim of this lesson is to explore the fundamental concepts of the transformation of 
forces between inertial reference frames, understand the covariance of physical laws under 
these transformations, and grasp the principles of relativity, including the invariance of the 
speed of light in all inertial frames of reference.Learn how forces transform between different 
inertial reference frames using the principles of classical mechanics and special 
relativity.Investigate how the fundamental laws of physics remain unchanged or covariant 
when observed from different inertial frames.Understand that the laws of physics are the 
same in all inertial frames of reference, and how this leads to the relativity of simultaneity, 
time dilation, and length contraction.Study the concept that the speed of light is constant and 
the same in all inertial reference frames, irrespective of the motion of the source or observer. 

STRUCTURE: 

14.1 Introduction 

14.2 Transformation of Force from One Inertial System to Another 

14.3 Covariance of the Physical Laws 

14.4 Principle of Relativity and Speed of Light 

14.5 Summary 

14.6 Technical Terms 

14.7 Self-Assessment Questions 

14.8 Suggested Readings 

14.1 TRANSFORMATION OF FORCE FROM ONE INERTIAL SYSTEM TO 
 ANOTHER: 

 Suppose that the force F on a particle of mass m in the frame S is represented by 
Newton’s second law  

F = ma     (1) 
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But according to the postulate that the laws of physics are the same in the frame S and in 
another frame ܵᇱ, which is in uniform motion relative to S, we have 

ᇱࡲ =  ᇱ   (2)ࢇᇱ

 in the frame ܵᇱ.  

 We have shown in the last article that the acceleration of the particle is the same in 
two inertial frames, connected by Galilean transformations, i.e., 

ᇱࢇ =  (3)    ࢇ

where in the deduction basically we have assumed the invariance of space and time 
separately. 

 In Newtonian mechanics, the mass is independent of velocity and hence  

 =  ᇱ

 Thus,  

ࡲ = ࢇ  = ᇱࢇᇱ  =  ᇱ  (4)ࡲ 

 This means that if the relation F = ma (Newton’s second law) is used to define the 
force, then inertial systems, the force F will have the same magnitude and direction, 
independent of the relative velocities of the reference frames. Further, the Newton’s equation 
has the same form in the inertial frame S as well as in the frame S’. We mean this statement 
that Newton’s second law is invariant under Galilean transformations. As Newton’s first law 
(F = 0) can be deduced from second law and third law involves forces. We may also say that 
Newton’s laws of motion (so called laws of mechanics) are invariant under Galilean 
transformations. 

14.2 COVARIANCE OF THE PHYSICAL LAWS: 

 If the form of a law is not changed by certain coordinate transformation (i.e., if it is 
the same law in terms of either set of coordinates), we call that the law is invariant or 
covariant with respect to the coordinate transformation under consideration. Newton’s laws of 
motion are covariant with respect to Galilean transformations. Mathematically, suppose a 
phenomenon is described in system S by an equation  

f(x, y, z, t) = 0     (5) 

 Then the covariance of the equations means that in the system S’, it will have the 
form  

,ᇱࢠ,ᇱ࢟,ᇱ࢞)ࢌ (ᇱ࢚ =     (6) 
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 The principle of relativity asserts that the laws of physics are covariant in all inertial 
systems, moving with constant relative velocity. It is to be mentioned that the Galilean 
transformations satisfy the principle of relativity as far as Newton’s laws of motion are 
concerned, but as we shall see later, these transformations do not satisfy this principle for 
propagation of electromagnetic waves. 

14.3 PRINCIPLE OF RELATIVITY AND SPEED OF LIGHT: 

 According to the principle of relativity, basic laws of physics remain the same in all 
inertial systems. If the principle of relativity is extended to electrodynamics, Maxwell’s 
fundamental equations should remain the same in any two inertial systems with uniform 
constant relative motion. It follows from Maxwell’s equations that the electromagnetic waves 
are propagated in vacuum with a constant velocity c = 3 x 108 m/sec in all directions 
irrespective of the motion of the source. Light waves are basically electromagnetic waves and 
hence according to the principle of relativity, the velocity of light must be the same with 
value c in all inertial systems, independent of the motion of the light source.  

 It can be shown that the idea of constancy of speed of light contradicts the Galilean 
transformations. Let S be frame of reference with a source of light at the origin O. In this 

system, the velocity of light is c in all the directions. Now, let a frame ܵᇱ be moving with 

constant velocity v = vıመ̇ along X-axis. In the frame ܵᇱ, the velocity of light, using Galilean 
transformations, will be given by 

ᇱࢉ = ࢉ −  (7)     ࢜

 

Fig. 14.1 

The speed of the light signal along X-axis (θ = 0) will be noted in S’ as  
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ᇱࢉ = ࢉ −  (8)    ࢜

and along ܻᇱ-axis (θ = π/2) as 

ࢉ√ = ᇱࢉ − ᇱࢉ =   (as c2࢜ +  )       (9)࢜ 

Hence, if we use Galilean transformations, we find that the speed of light is not constant in all 
inertial systems and this contradicts the principle of relativity. Further S must be a preferred 

or absolute frame in which the speed of light is c and hence any other inertial frame (ܵᇱ) 
should be less suitable. This leads the possibility of defining absolute motion. If we accept 
the principle of relativity in the fields of electromagnetism and optics, we should revise the 
concepts of space and time. However, it seems necessary that before adopting a radical 
departure from the classical ideas of space and time, one should be sure for the truth of the 
new step by experiments. Michelson Morley experiments were performed to detect the 
influence of the motion of the earth with respect to so called absolute frame. Negative results 
were obtained from these experiments and this led finally the acceptance of the principle of 
relativity.  

14.5 SUMMARY: 

 This lesson delves into the core principles of relativity and the transformation of 
forces between different inertial reference frames. The transformation equations illustrate 
how forces behave in moving frames of reference, linking classical mechanics to relativistic 
effects. It emphasizes the covariance of physical laws, showing that the fundamental laws 
governing nature remain consistent across inertial frames. The principle of relativity is 
discussed, highlighting that no preferred frame exists and the laws of physics are invariant 
across all inertial frames. Lastly, the constancy of the speed of light is examined, reinforcing 
one of the cornerstones of modern physics, which leads to profound implications for time, 
space, and motion at high velocities. 

14.6 TECHNICAL TERMS:  

 Transformation of force, covariance, principle of relativity and speed of light. 

14.7 SELF-ASSESSMENT QUESTIONS: 

1) Write a note on the Transformation of force from one inertial system to another. 

2) Discuss the covariance of the physical laws. 

3) Write the principle of relativity and speed of light. 
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14.8 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2) Fundamentals of Classical Mechanics by J.C. Upadhyaya. 

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 

 

Prof. G. Naga Raju 



LESSON-15 

APPLICATIONS OF SPECIAL THEORY OF RELATIVITY 

15.0 AIM AND OBJECTIVES: 

To learn about- 

 Lorentz Transformations. 

 Consequences of Lorentz Transformations. 

STRUCTURE:  

15.1 Introduction 
15.2 Lorentz Transformations 
15.3 Consequences of Lorentz Transformations 
           15.3.1 Aberration of Light from Stars 
           15.3.2 Length Contraction  
           15.3.3. Time Dilation 
           15.3.4. Energy-Mass Relation 

15.4 Summary 
15.5 Technical Terms 
15.6 Self-Assessed Questions 
15.7 Suggested Readings 

15.1 INTRODUCTION: 

The chapter on the theory of relativity introduces the foundational principles of Lorentz 
transformations, which describe how measurements of space and time change for observers 
in different inertial frames. The Lorentz transformations are crucial for understanding 
relativistic effects that emerge at high velocities, approaching the speed of light. This chapter 
explores the consequences of Lorentz transformations, including phenomena such as 
aberration of light from stars, length contraction, time dilation, and the energy-mass relation. 
These concepts challenge our classical intuitions about time and space, highlighting the 
interconnectedness of physical realities in the framework of modern physics. 

15.2 LORENTZ TRANSFORMATIONS: 

From practical point of view at low speeds, there is no difference between the Lorentzian and 
Galilean transformations and we use the later in most of the problems which we encounter. 
However, when we have to deal with very fast particles having velocities comparable to c, 
such as electrons in the atoms, cosmic ray particles, we must use the Lorentz transformations. 
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 Suppose that S and S' be the two inertial frames of reference. S' is moving along 
positive direction of X-axis with velocity v relative to the frame S. Let t and t' be the times 
recorded in two frames. For our convenience, we will assume that the origins O and O' of the 
two co-ordinate systems coincide at t = t' = 0. 

 Now suppose that a source of light is situated at the origin O in the frame S, from 
which a wavefront of light is emitted at t = 0. When the light reaches at the point P, let the 
positions and times, measured by the observers O and O', be (x, y, z, t) and (x', y', z', t') 
respectively. If the velocity of light is c, then the time measured by the light signal in 
traversing the distance OP in frame S is 

࢚ = ࡼࡻ


= (ࢠା࢟ା࢞) ⁄

ࢉ
 or ࢞+࢟ + ࢠ =    (1)࢚ࢉ

This equation represents the equation of wavefront in frame S. According to the special 
theory of relativity, the velocity of light will be c in the second frame S'. Hence, in frame S', 
the time required by the light signal in travelling the distance O'P is given by 

′ܠ = ࡼᇱ۽


= (ᇱܢᇱାܡᇱାܠ) ⁄

ࢉ
 or ࢞′+ܡ′ + ′ܢ =    (2)࢚ࢉ

which is the equation of the wavefront in frame S'. 

Now transformation equations relating x, y, z, t and x', y', z', t' should be such that eq. (2) 
transforms to ea. (1). The Galilean transformations connect the measurements in the two 
frames according to the following equations: 

x' = x - vt ; y' = y; z' = z; t' =t 

 

Fig.15.1: Representation of Lorentz Transformations 
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Substituting these values in eq. (2), we get 

(x-vt)2+y2+z2-c2t2 = 0 or  

x2-2xvt+v2t2+y2+z2-c2t2 = 0      (3) 

 This equation is certainly not in agreement with eq.(1) because it contains an extra 

term (-2xvt+v2t2).Thus the Galilean transformation fails. Further t + t’. (because t=OP/c and 

t’=O’P/c) which does not agree with the Galilean transformation equations. If the principle of 

the constancy of the speed of light is valid in all frames, there should exists some 

transformation equations which reduces to the Galilean one for v/c→0 and which transform 

x’2+y’2+z’2-c2t2=0 into x2+y2+z2-c2t2=0 

 When we look at the eq. (1) and eq. (3), we find that the terms of y and z are in 

agreement. Hence we can say y'= y and z'= z. The extra term (-2xvt+v2t2) indicates that 

transformation in x and t should be modified so that this extra term is cancelled. 

 We note that for the observer O, the distance OO' = vt and therefore when x' = 0 

(point O'), x=vt. This suggests the transformation x’= α(x-vt) because only for x’=0, x=vt. 

Since t' is different from t and may be depending on x, so that in general we may also assume 

that t' = α' (t + fx). Here a, a' and f are constants, to be determined (for Galilean 

transformations ar a'=1 and f=0). Now substitution for x', y', z' and t' in (11), we have 

∝ଶ ݔ) − + ଶ(ݐݒ ଶݕ + ଶݖ = ܿଶ ∝ଶ ݐ) +   ଶ Or(ݔ݂

∝ଶ ଶݔ) − ݐݔݒ2 + (ଶݐଶݒ + ଶݕ + ଶݖ = ܿଶ ∝ଶ ଶݐ) + ݐݔ2݂ + ݂ଶݔଶ) 

or ݔଶ(∝ଶ− ݂ଶαᇱଶܿଶ)-2x(∝ଶ ݒ + ݂αᇱଶܿଶ) + ଶݕ  +  = (ଶݖ

ቀαᇱଶ − ∝మ௩మ

మ
ቁ ܿଶݐଶ      (4) 

This result obtained from applying transformations from S' to S, must be identical to eq. (1). 

Therefore,  

൫∝ଶ− ݂ଶαᇱଶܿଶ൯ = 1      (i)   

(∝ଶ ݒ + ݂αᇱଶܿଶ) = 0  (ii) 

ቀαᇱଶ − ∝మ௩మ

మ
ቁ = 1 (iii) 
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Substituting the value of ݂ = ∝మ௩మ

ᇲమమ
  from (ii) in eq.(i), we get  

ଶߙ − ∝ర௩మ

మ
= 1 or 1 − ∝మ௩మ

ᇲమమ
= ଵ

∝మ
 

But from (iii) αᇱଶ = 1 + ∝మ௩మ

మ
, hence  

1 − ∝మ௩మ మ⁄
ଵା∝మ௩మ మ⁄

= ଵ
∝మ

 or   ଵ
ଵା∝మ௩మ మ⁄

= ଵ
∝మ

   or 1 + ∝మ௩మ

మ
 

or ߙଶ = ଵ
ଵି௩మ మ⁄

  or ∝= ଵ
ඥଵି௩మ మ⁄

 

Therefore,  

αᇱଶ = 1 + ௩మ మ⁄
ଵି௩మ మ⁄

= ଵ
ଵି௩మ మ⁄

 or α'= ଵ
ඥଵି௩మ మ⁄

 

Thus from (ii) ݂ = − ௩
మ

 

Therefore,  

x'= ∝ (x – – x) =(ݐݒ  (ݐݒ  ඥ1 − ଶݒ ܿଶ⁄ൗ and ݐ′ = α'(t+fx)=( ݐ − ݔݒ
ܿଶൗ ) ඥ1− ଶݒ ܿଶ⁄⁄  

Thus, the new transformation equations, which are in agreement with the invariance of 

velocity of light c, are 

xᇱ = (௫ି௩௧)
ඥଵି௩మ మ⁄

 ; y'= y ,z'= z ; tᇱ =
( ௧ି௩௫ మൗ )

ඥଵି௩మ మ⁄
  (5) 

These equations are called Lorentz transformations, because they were first obtained by 
Dutch physicist H. Lorentz. 

We note that when v «c i.e, we get the Galilean transformations from the Lorentz 
transformations. In most of the cases, which we encounter on earth, < is a velocity very large 
compared with the great majority of velocities i.e., v<< c so that the results of Lorentz 
transformations do not to any great extent from those of the Galilean transformations; but 
from a theoretical point of view the Lorentz transformations represent a most profound 
conceptual change specially in relation to space and time. 

For convenience, sometimes we put ߚ = ݒ ܿ⁄  and 1 ඥ1 − ଶݒ ܿଶ⁄⁄ = 1 ඥ1 − ⁄ ଶߚ  = γ 

Hence the transformations are written as 

′ݔ = – ݔ)ݕ  ;(ݐݒ  = ′ݕ  ;ݕ  ′ݖ = ;ݖ  ᇱݐ = ݐ)ߛ − ௩௫
మ

)    (6) 
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In the derivation of these equations, we assumed that frame S' is moving in positive X-
direction with velocity v relative to the frame S. But if we say that frame S is moving with – 
v velocity relative to S' along negative X-direction, then the transformations are  

= ݔ ᇱݔ)ݕ  +  ;(ݐݒ 

ݕ  = ;′ݕ = ݖ    ′ݖ 

ݐ = ᇱݐ)ߛ + ௩௫ᇲ

మ
)      (7) 

These are known as inverse 

15.3 CONSEQUENCES OF LORENTZ TRANSFORMATIONS: 

15.3.1 Aberration of Light from Stars: 

By “aberration” I am not referring to optical aberrations produced by lenses and mirrors, such 
as coma and astigmatism and similar optical aberrations, but rather to the aberration of 
light resulting from the vector difference between the velocity of light and the velocity of 
Earth. 

 The effect of aberration is to displace a star towards the Apex of the Earth’s Way, 
which is the point on the celestial sphere towards which Earth is moving. The apex is where 
the ecliptic intersects the observer’s meridian at 6 hours local apparent solar time. The 
amount of the aberrational displacement varies with position on the sky, being greatest for 
stars 90∘90∘ from the apex. It is then of magnitude v/cv/c, where v v and cc are the speeds of 
Earth and light respectively. This amounts to 20.5 arc seconds. (You didn’t know that the 
speed of Earth could be expressed in arc seconds, did you?) But what matters in astrometry is 
the differential aberration between one edge of the detector (photographic film or CCD) and 
the other. This is going to be a much smaller effect than differential refraction. 

Let us examine the effect of aberration in figures:  

 

Fig. 15.2 Effect of Aberration 
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Part (a) of the figure shows a stationary reference frame. By “stationary” I mean a frame in 
which Earth, is moving towards the apex at speed v=29.8 km s−1v=29.8 km s−1. Light from a 
star is approaching Earth at speed cc from a direction that makes an angle χ, which shall call 
the true apical distance, with the direction to the apex. 

 Part (b) shows the same situation referred to a frame in which Earth is stationary; that 
is the frame (b) is moving towards the apex with speed vv relative to the frame (a). Referred 
to this frame, the speed of light is cc, and it is coming from a direction χ′χ′, which I shall call 
the apparent apical distance. 

The difference ε=χ - χ′ as the aberrational displacement. 

For brevity I shall refer to the direction to the apex as the “x-direction” and the upwards 
direction in the figures as the “y-direction”. 

Referred to frame (a), the x-component of the velocity of light is −ccosχ, referred to frame 
(b), the xx-component of the velocity of light is −ccosχ′. These are related by the Lorentz 
transformation between velocity components: 

ccosχ′=ccosχ+v/1+(v/c)cosχ.   (8) 

Referred to frame (b), the y-component of the velocity of light is –csinχ and referred to frame 
(b), the y-component of the velocity of light is −csinχ′. These are related by the Lorentz 
transformation between velocity components: 

csinχ′=csinχγ(1+(v/c)cosχ),   (9) 

in which, if need be, a cc can be canceled from each side of the Equation. In Equation (9), 

 γ is the Lorentz factor ට1− ௩మ

మ
. 

Equations (8) and (9) are not independent; indeed one may be regarded as just another way of 
writing the other. One easy way to show this, for example, is to show that sin2χ′+cos2χ′=1. 

15.3.2 Length Contraction:  

 Having seen that time interval measurements in two reference frames are different, it 
is natural to expect the same about length measurements too. The definition of proper length 
goes along the same line as that of proper time. Definition: The Proper length of an object is 
its length measured in a frame in which the object is at rest. Let us compare the length of an 
object as measured in two reference frames. Frame S in which the object is at rest with length 
L, say along the x direction, and another frame S ′ in motion with respect to S along the x 
direction with speed v. The world lines of the object in the two frames are shown below. Let 
A and B be the two events at which the two ends of the object cross the observer. In S  
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A = (ctA; xA); B = (ctB; xB)     (10) 

 and in S ′ 

 A = (ct′A; 0) ; B = (ct′B; 0).     (11)  

Then the length of the object in S′ is given by 

 L ′ = v(t′B − t′A).      (12)  

The space time interval between A and B is the same in the two reference frames. This gives 

 c2(t′B − t′A)2 = c 2 (tB − tA)2 − (xB − xA)2 

⇒ c2L′2/ v2 = c2/v2(L2 − L2)    (13) 

 or, 

 L′ = Lට1− ௩మ

మ
= L/γ .     (14)  

Since γ ≥ 1, L ′ ≤ L, i.e. objects in motion appear smaller along the direction of motion.  

PS: We have considered only the contraction along the direction of motion. However, it is 
straightforward to show (using detailed space-time diagrams) that in the other two directions, 
i.e., the direction perpendicular to the motion, there is no contraction. 

15.3.3. Time Dilation: 

The Proper time between two events is defined as the time interval between the events in a 
frame in which the two events happen at the same place. The time shown by a clock in a 
reference frame in which the clock is at rest is the Proper time shown by the clock. Evidently, 
proper time is not defined between two events that are space like separated. The most 
important facet of special relativity is that it identifies space and time not as separate entities 
but part of a single space-time continuum. It forces us a rethink on our basic notion of time 
and space measurements in the elementary of situations. Consider a clock at rest in a 
reference frame S. The world line of the clock is shown in Figure 
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Fig: Event B might transform to B′ in some other reference frame S ′. However, the time 
ordering between events A and B is preserved (A′ = A). This is true for any two events that 
are time like separated.  

But the same is not true for events C and A, which are space like separated. C transforms to 
C′ in S′. Since the time ordering is reversed, A precedes C in S, but is reversed in S′ . The 
ticking of the clock at intervals t1,t2,.. are the events denoted by the dots along the time axis. 
The space-time interval between the first two ’ticks’ is given by 

∆s2 = c 2 (t2 − t1) 2     (15) 

Let S ′ be a reference frame moving with speed v in the x direction with respect to S. The two 
ticks of the clock in this reference frame do not happen at the same point in space. Let the 
two events in this frame be (ct′1,x′1 ) and (ct′2,x′2 ) (we do not bother about the y ′,z′ 
coordinates since they are same as the unprimed ones, the motion being in the x direction). 
The space time interval in this frame is given by 

 ∆s′2 = c 2 (t′
2 − t ′

1)2 − (x′
2 − x ′

1 ) 2   (16)  

= c 2(t′
2 − t ′

1)2− v 2(t′
2 − t ′

1)2     (17)  

Since the two intervals are same by Postulate II, it follows that  

(t2 − t1) = ට1− ௩మ

మ
·(t′

2 − t ′
1)    (18) 

Or 

(t′
2 − t ′

1) = γ (t2 − t1)     (19) 

 where γ =ට1− ௩మ

మ
 . So, the times shown by a moving clock will be different from the one it 

shows when it is at rest. It can be seen that 1 ≤ γ ≤ ∞. (t′
2 − t ′

1) is the time interval between 

two ’ticks’ in a frame in which the clock is moving. From Eq. (19) it follows that (t′
2 − t ′

1)  

≥(t2 − t1). Moving clocks run slower by a factor γ.  

14.3.4 Energy-Mass Relation: 

 Suppose a force ܨ = ௗ
ௗ௧

 e acting on a particle of mass m so that its kineticܾ   (ݒ݉)

energy increases. The gain in kinetic energy will be equal to the work done on the particle. If 

the force displaces the particle through a distance dr along its line of action, then the 

infinitesimal gain in the kinetic energy is  

ܧ݀ = ݎ݀ܨ = ௗ
ௗ௧

ݎ݀(ݒ݉) = Because v = ௗ)     (ݒ݉)݀ݒ
ௗ௧

) 
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If the particle starts from rest (v = 0) and acquires velocity v under the action of the force, 
then the gain in the kinetic energy by the particle will be given by  

ܧ = න݀ܧ = න (ݒ݉)݀ݒ
௩


 

Integrating this equation by parts, we obtain 

ܧ = ݒ݉ݒ ⋮ ∫ ௩ݒ݉
  -∫ ݒ݀ݒ݉ = ଶ௩ݒ݉

  -∫ ௩ௗ௩
ඥଵି௩మ మ⁄

௩
  

=  ௩మ

ඥଵି௩మ మ⁄
+݉ܿଶට1 − ௩మ

మ
 - ݉ܿଶ= మ

ඥଵି௩మ మ⁄
- ݉ܿଶ=݉ܿଶ −݉ܿଶ 

Thus, 

ܧ = (݉ −݉)ܿଶ = మ

ඥଵି௩మ మ⁄
−݉ܿଶ …….   (20) 

Where ݉ = ݉/ඥ1 − ଶݒ ܿଶ⁄  

Eq. (20) is the expression for relativistic kinetic energy. It shows that the gain in kinetic 
energy corresponds to an increase in mass.  

The quantity ݉ܿଶ, occurring in relation (20), is due to the rest mass of the particle and is 
called the rest energy or proper energy ܧ, of the particle, i.e.,  ܧ = ݉ܿଶ.Thus, the total 
energy of the particle, when it is moving with velocity v, is  

E = kinetic energy (Ek) + Rest energy (E0) 

= (݉−݉)ܿଶ + ݉ܿଶ = ݉ܿଶ 

Thus E= మ

ඥଵି௩మ మ⁄
=  ݉ܿଶ ……      (21) 

For integrating put 1 − ଶݒ ܿଶ⁄ = ݒ݀ ݒ and hence ߙ =  −ܿଶ݀ߙ 2⁄  

This energy E is called the relativistic energy (total energy) of a particle, having relativistic 
mass m. Thus, there exists a very close relation between mass and energy, unknown in 
classical physics. This is well known Einstein's mass-energy relation.  

The relativistic kinetic energy can be expressed as   

ܧ = ܧ − ܧ  = (݉ −݉)ܿଶ = ݉ܿଶ(1 − ଶݒ ܿଶ⁄ )ିଵ ଶ⁄ −  ݉ܿଶ 

ܧ = ݉ܿଶ[ 1 + ଵ
ଶ

. ௩
మ

మ
+ ଷ
଼

. ௩
ర

ర
 +……]- ݉ܿଶ (Using Bionomial theorem)  

In the limit we have ݒଶ ܿଶ⁄ ℎܽ݊ݐ ݏݏ݈݁  <<   ݁ݒℎܽ ݁ݓ,1

ܧ = ݉ܿଶ ቀ1 + ௩మ

ଶమ
ቁ −݉ܿଶ =  ଵ

ଶ
݉ݒଶ…..   (22) 
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This relation is the classical result for the kinetic energy.  

We see from eq. (20) and (21) that the increase in kinetic energy or total energy ∆ܧ of a 
particle is associated with a corresponding increase in mass ∆݉ according to the relation,  

ܧ∆ = ∆݉ܿଶ ……       (23) 

It is known that one kind of energy, e.g., kinetic energy can be converted in other forms and 
hence all forms of energy must be associated with them some mass. According to Einstein, 
eq. (23) is the most important consequence of the special theory of relativity. He considers 
that an amount of energy ∆ܧin any form is equivalent to a mass ∆݉ = ∆ܧ/ܿଶ and conversely, 
any mass ∆݉ is equivalent to an energy 

ܧ∆ = ∆݉ܿଶ 

This is called the principle of equivalence of mass and energy. Thus there is the possibility 
that mass can be changed into energy and vice-versa. The truth of this fact has been verified 
by a number of experiments.  

In the language of Einstein, the mass of a body is the measure of the quantity of its energy. 
This means that a system of inertial mass m is equivalent to an energy ܧ =  ݉ܿଶ. Further the 
rest mass of a body cannot be distinguished from the mass due to the energy possessed by it. 
Thus, there is the possibility that the rest mass of a body is due to some form of energy and 
an interchange between rest mass and energy may occur. 

15.4 SUMMARY: 

In this chapter, the implications of Lorentz transformations are examined in detail. The 
aberration of light reveals how the motion of the observer influences the perceived position of 
stars. Length contraction illustrates how objects appear shorter when in motion relative to an 
observer. Time dilation demonstrates that time can flow at different rates depending on 
relative velocities. Finally, the energy-mass relation, epitomized by the equation E=mc², 
succinctly captures the equivalence of mass and energy. These consequences fundamentally 
alter our understanding of the universe, showcasing the profound effects of relativity on both 
theoretical physics and practical applications. 

15.5 TECHNICAL TERMS: 

 Lorentz Transformations, Aberration of Light from Stars and Time dilation.  

15.6 SELF-ASSESSED QUESTIONS: 

1) Lorentz transformation is the relationship between two different coordinate frames 
that move at a constant velocity and are relative to each other. 



Classical Mechanics                                      15.11             Applic. of Special Theory of Relativity 

2) Time dilation is the difference in elapsed time between two clocks that are in 
motion relative to each other. Time dilation is also the difference in elapsed time 
between two clocks that are experiencing gravitational fields of different 
magnitudes. 

3) Explain the significance of Lorentz transformations in the context of theory of 
relativity. How do they alter our understanding of space and time? 

4) Describe the aberration of light from stars. How does this effect provide evidence 
for the theory of relativity? 

5) Derive the expressions for Lorentz space time transformation 

6) What are Lorentz transformations, and why are they essential in relativity? 

7) How does the aberration of light affect our observations of celestial bodies? 

8) Define length contraction and provide an example of its significance. 

9) What is time dilation, and how does it impact the perception of time for moving 
observers? 

10) State the energy-mass relation and explain its importance in modern physics? 

15.7 SUGGESTED READINGS: 

1) Classical Mechanics by H.Goldstein. 

2) Fundamentals of Classical Mechanics by J.C. Upadhyaya.   

3) Classical Mechanics by G. Aruldhas, PHI Publishers.  

4) The Theory of relativity and applications, Allen Rea. 
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